Natural Killer Cells in Antifungal Immunity (2024)

1. Zaoutis TE, Heydon K, Chu JH, Walsh TJ, Steinbach WJ. Epidemiology, outcomes, and costs of invasive aspergillosis in immunocompromised children in the United States, 2000. Pediatrics (2006) 117:e711–6. 10.1542/peds.2005-1161 [PubMed] [CrossRef] [Google Scholar]

2. Bitar D, Lortholary O, Le Strat Y, Nicolau J, Coignard B, Tattevin P, et al.Population-based analysis of invasive fungal infections, France, 2001–2010. Emerg Infect Dis (2014) 20:1149–55. 10.3201/eid2007.140087 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. McNeil MM, Nash SL, Hajjeh RA, Phelan MA, Conn LA, Plikaytis BD, et al.Trends in mortality due to invasive mycotic diseases in the United States, 1980-1997. Clin Infect Dis (2001) 33:641–7. 10.1086/322606 [PubMed] [CrossRef] [Google Scholar]

4. Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, Walsh TJ, et al.Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: overview of the transplant-associated infection surveillance network (TRANSNET) database. Clin Infect Dis (2010) 50:1091–100. 10.1086/651263 [PubMed] [CrossRef] [Google Scholar]

5. Horn DL, Fishman JA, Steinbach WJ, Anaissie EJ, Marr KA, Olyaei AJ, et al.Presentation of the PATH Alliance® registry for prospective data collection and analysis of the epidemiology, therapy, and outcomes of invasive fungal infections. Diagn Microbiol Infect Dis (2007) 59:407–14. 10.1016/j.diagmicrobio.2007.06.008 [PubMed] [CrossRef] [Google Scholar]

6. Azie N, Neofytos D, Pfaller M, Meier-Kriesche HU, Quan SP, Horn D. The PATH (prospective antifungal therapy) Alliance® registry and invasive fungal infections: update 2012. Diagn Microbiol Infect Dis (2012) 73:293–300. 10.1016/j.diagmicrobio.2012.06.012 [PubMed] [CrossRef] [Google Scholar]

7. Lehrnbecher T, Koehl U, Wittekindt B, Bochennek K, Tramsen L, Klingebiel T, et al.Changes in host defence induced by malignancies and antineoplastic treatment: implication for immunotherapeutic strategies. Lancet Oncol (2008) 9:269–78. 10.1016/S1470-2045(08)70071-8 [PubMed] [CrossRef] [Google Scholar]

8. Lehrnbecher T, Foster C, Vázquez N, Mackall CL, Chanock SJ.Therapy-induced alterations in host defense in children receiving therapy for cancer. J Pediatr Hematol Oncol (1997) 19:399–417. 10.1097/00043426-199709000-00001 [PubMed] [CrossRef] [Google Scholar]

9. Bodey GP.Infectious complications of acute leukemia. Med Times (1966) 94:1076–85. [PubMed] [Google Scholar]

10. Stuehler C, Kuenzli E, Jaeger VK, Baettig V, Ferracin F, Rajacic Z, et al.Immune reconstitution after allogeneic hematopoietic stem cell transplantation and association with occurrence and outcome of invasive aspergillosis. J Infect Dis (2015) 212:959–67. 10.1093/infdis/jiv143 [PubMed] [CrossRef] [Google Scholar]

11. Lehrnbecher T, Kalkum M, Champer J, Tramsen L, Schmidt S, Klingebiel T.Immunotherapy in invasive fungal infection – focus on invasive aspergillosis. Curr Pharm Des (2013) 19:3689–712. 10.2174/1381612811319200010 [PubMed] [CrossRef] [Google Scholar]

12. Romani L. Immunity to fungal infections. Nat Rev Immunol (2004) 4:1–23. 10.1038/nri1255 [PubMed] [CrossRef] [Google Scholar]

13. Romani L. Immunity to fungal infections. Nat Rev Immunol (2011) 11:275–88. 10.1038/nri2939 [PubMed] [CrossRef] [Google Scholar]

14. Fisher BT, Robinson PD, Lehrnbecher T, Steinbach WJ, Zaoutis TE, Phillips B, et al.Risk factors for invasive fungal disease in pediatric cancer and hematopoietic stem cell transplantation: a systematic review. J Pediatric Infect Dis Soc (2017). 10.1093/jpids/pix030 [PubMed] [CrossRef] [Google Scholar]

15. Cunha C, Kurzai O, Löffler J, Aversa F, Romani L, Carvalho A. Neutrophil responses to aspergillosis: new roles for old players. Mycopathologia (2014) 178:387–93. 10.1007/s11046-014-9796-7 [PubMed] [CrossRef] [Google Scholar]

16. Borghi M, Renga G, Puccetti M, Oikonomou V, Palmieri M, Galosi C, et al.Antifungal Th immunity: growing up in family. Front Immunol (2014) 5:506. 10.3389/fimmu.2014.00506 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Limon JJ, Skalski JH, Underhill DM. Commensal fungi in health and disease. Cell Host Microbe (2017) 22:156–65. 10.1016/j.chom.2017.07.002 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol (2001) 22:633–40. 10.1016/S1471-4906(01)02060-9 [PubMed] [CrossRef] [Google Scholar]

19. Sun JC, Lopez-Verges S, Kim CC, DeRisi JL, Lanier LL.NK cells and immune “memory”. J Immunol (2011) 186:1891–7. 10.4049/jimmunol.1003035 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Narni-Mancinelli E, Vivier E, Kerdiles YM.The “T-cell-ness” of NK cells: unexpected similarities between NK cells and T cells. Int Immunol (2011) 23:427–31. 10.1093/intimm/dxr035 [PubMed] [CrossRef] [Google Scholar]

21. Kleinnijenhuis J, Quintin J, Preijers F, Joosten LAB, Jacobs C, Xavier RJ, et al.BCG-induced trained immunity in NK cells: role for non-specific protection to infection. Clin Immunol (2014) 155:213–9. 10.1016/j.clim.2014.10.005 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Kiessling R, Klein E, Wigzell H.“Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol (1975) 5:112–7. 10.1002/eji.1830050208 [PubMed] [CrossRef] [Google Scholar]

23. Lam VC, Lanier LL. NK cells in host responses to viral infections. Curr Opin Immunol (2017) 44:43–51. 10.1016/j.coi.2016.11.003 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science (2002) 296:1323–6. 10.1126/science.1070884 [PubMed] [CrossRef] [Google Scholar]

25. Adams EJ, Juo ZS, Venook RT, Boulanger MJ, Arase H, Lanier LL, et al.Structural elucidation of the m157 mouse cytomegalovirus ligand for Ly49 natural killer cell receptors. Proc Natl Acad Sci U S A (2007) 104:10128–33. 10.1073/pnas.0703735104 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Kielczewska A, Kim H-S, Lanier LL, Dimasi N, Vidal SM.Critical residues at the Ly49 natural killer receptor’s hom*odimer interface determine functional recognition of m157, a mouse cytomegalovirus MHC class I-like protein. J Immunol (2007) 178:369–77. 10.4049/jimmunol.178.1.369 [PubMed] [CrossRef] [Google Scholar]

27. Romee R, Schneider SE, Leong JW, Chase JM, Keppel CR, Sullivan RP, et al.Cytokine activation induces human memory-like NK cells. Blood (2012) 120:4751–60. 10.1182/blood-2012-04-419283 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Malmberg K-J, Carlsten M, Björklund A, Sohlberg E, Bryceson YT, Ljunggren H-G.Natural killer cell-mediated immunosurveillance of human cancer. Semin Immunol (2017) 31:20–9. 10.1016/j.smim.2017.08.002 [PubMed] [CrossRef] [Google Scholar]

29. Herberman RR, Ortaldo JR, Bonnard GD.Augmentation by interferon of human natural and antibody-dependent cell-mediated cytotoxicity. Nature (1979) 277:221–3. 10.1038/277221a0 [PubMed] [CrossRef] [Google Scholar]

30. Ortaldo JR, Bonnard GD, Kind PD, Herberman RB.Cytotoxicity by cultured human lymphocytes: characteristics of effector cells and specificity of cytotoxicity. J Immunol (1979) 122:1489–94. [PubMed] [Google Scholar]

31. Biron CA, Welsh RM. Activation and role of natural killer cells in virus infections. Med Microbiol Immunol (1982) 170:155–72. 10.1007/BF02298196 [PubMed] [CrossRef] [Google Scholar]

32. Liu LL, Béziat V, Oei VYS, Pfefferle A, Schaffer M, Lehmann S, et al.Ex vivo expanded adaptive NK cells effectively kill primary acute lymphoblastic leukemia cells. Cancer Immunol Res (2017) 5:654–65. 10.1158/2326-6066.CIR-16-0296 [PubMed] [CrossRef] [Google Scholar]

33. Schlegel P, Ditthard K, Lang P, Mezger M, Michaelis S, Handgretinger R, et al.NKG2D signaling leads to NK cell mediated lysis of childhood AML. J Immunol Res (2015) 2015:473175. 10.1155/2015/473175 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Castriconi R, Dondero A, Corrias MV, Lanino E, Pende D, Moretta L, et al.Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1-poliovirus receptor interaction. Cancer Res (2004) 64:9180–4. 10.1158/0008-5472.CAN-04-2682 [PubMed] [CrossRef] [Google Scholar]

35. Kloess S, Huenecke S, Piechulek D, Esser R, Koch J, Brehm C, et al.IL-2-activated haploidentical NK cells restore NKG2D-mediated NK-cell cytotoxicity in neuroblastoma patients by scavenging of plasma MICA. Eur J Immunol (2010) 40:3255–67. 10.1002/eji.201040568 [PubMed] [CrossRef] [Google Scholar]

36. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol (2008) 9:503–10. 10.1038/ni1582 [PubMed] [CrossRef] [Google Scholar]

37. Béziat V, Dalgard O, Asselah T, Halfon P, Bedossa P, Boudifa A, et al.CMV drives clonal expansion of NKG2C+ NK cells expressing self-specific KIRs in chronic hepatitis patients. Eur J Immunol (2012) 42:447–57. 10.1002/eji.201141826 [PubMed] [CrossRef] [Google Scholar]

38. Saghafian-Hedengren S, Sohlberg E, Theorell J, Carvalho-Queiroz C, Nagy N, Persson J-O, et al.Epstein-Barr virus coinfection in children boosts cytomegalovirus-induced differentiation of natural killer cells. J Virol (2013) 87:13446–55. 10.1128/JVI.02382-13 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Shabani Z, Bagheri M, Zare-Bidaki M, Hassanshahi G, Arababadi MK, Mohammadi Nejad M, et al.NK cells in hepatitis B virus infection: a potent target for immunotherapy. Arch Virol (2014) 159:1555–65. 10.1007/s00705-013-1965-3 [PubMed] [CrossRef] [Google Scholar]

40. Werner JM, Heller T, Gordon AM, Sheets A, Sherker AH, Kessler E, et al.Innate immune responses in hepatitis C virus-exposed healthcare workers who do not develop acute infection. Hepatology (2013) 58:1621–31. 10.1002/hep.26353 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Garcia-Peñarrubia P, Koster FT, Kelley RO, McDowell TD, Bankhurst AD. Antibacterial activity of human natural killer cells. J Exp Med (1989) 169:99–113. 10.1084/jem.169.1.99 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Wherry JC, Schreiber RD, Unanue ER. Regulation of gamma interferon production by natural killer cells in scid mice: roles of tumor necrosis factor and bacterial stimuli. Infect Immun (1991) 59:1709–15. [PMC free article] [PubMed] [Google Scholar]

43. Anfossi N, André P, Guia S, Falk CS, Roetynck S, Stewart CA, et al.Human NK cell education by inhibitory receptors for MHC class I. Immunity (2006) 25:331–42. 10.1016/j.immuni.2006.06.013 [PubMed] [CrossRef] [Google Scholar]

44. Parsons MS, Zipperlen K, Gallant M, Grant M. Killer cell immunoglobulin-like receptor 3DL1 licenses CD16-mediated effector functions of natural killer cells. J Leukoc Biol (2010) 88:905–12. 10.1189/jlb.1009687 [PubMed] [CrossRef] [Google Scholar]

45. Horowitz A, Djaoud Z, Nemat-Gorgani N, Blokhuis J, Hilton HG, Béziat V, et al.Class I HLA haplotypes form two schools that educate NK cells in different ways. Sci Immunol (2016) 1:eaag1672. 10.1126/sciimmunol.aag1672 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Campbell KS, Hasegawa J.NK cell biology: an update and future directions. J Allergy Clin Immunol (2013) 132:536–44. 10.1016/j.jaci.2013.07.006 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Yawata M, Yawata N, Draghi M, Little A-M, Partheniou F, Parham P. Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J Exp Med (2006) 203:633–45. 10.1084/jem.20051884 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Yawata M, Yawata N, Draghi M, Partheniou F, Little A-M, Parham P.MHC class I-specific inhibitory receptors and their ligands structure diverse human NK-cell repertoires toward a balance of missing self-response. Blood (2008) 112:2369–80. 10.1182/blood-2008-03-143727 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N, Dogan OC, et al.Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med (2013) 5:208ra145. 10.1126/scitranslmed.3006702 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song Y-J, Yang L, et al.Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature (2005) 436:709–13. 10.1038/nature03847 [PubMed] [CrossRef] [Google Scholar]

51. Fernandez NC, Treiner E, Vance RE, Jamieson AM, Lemieux S, Raulet DH.A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood (2005) 105:4416–23. 10.1182/blood-2004-08-3156 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Brodin P, Lakshmikanth T, Johansson S, Kärre K, Höglund P. The strength of inhibitory input during education quantitatively tunes the functional responsiveness of individual natural killer cells. Blood (2009) 113:2434–41. 10.1182/blood-2008-05-156836 [PubMed] [CrossRef] [Google Scholar]

53. Joncker NT, Fernandez NC, Treiner E, Vivier E, Raulet DH. NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self-MHC class I: the rheostat model. J Immunol (2009) 182:4572–80. 10.4049/jimmunol.0803900 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Orr MT, Murphy WJ, Lanier LL.“Unlicensed” natural killer cells dominate the response to cytomegalovirus infection. Nat Immunol (2010) 11:321–7. 10.1038/ni.1849 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al.Innate lymphoid cells – a proposal for uniform nomenclature. Nat Rev Immunol (2013) 13:145–9. 10.1038/nri3365 [PubMed] [CrossRef] [Google Scholar]

56. Orange JS, Ballas ZK.Natural killer cells in human health and disease. Clin Immunol (2006) 118:1–10. 10.1016/j.clim.2005.10.011 [PubMed] [CrossRef] [Google Scholar]

57. Fernández-Ruiz M, López-Medrano F, San Juan R, Allende LM, Paz-Artal E, Aguado JM.Low natural killer cell counts and onset of invasive fungal disease after solid organ transplantation. J Infect Dis (2016) 213:873–4. 10.1093/infdis/jiv552 [PubMed] [CrossRef] [Google Scholar]

58. Palma-Carlos AG, Palma-Carlos ML. Chronic mucocutaneous candidiasis revisited. Allerg Immunol (Paris) (2001) 33:229–32. [PubMed] [Google Scholar]

59. Chiu S-J, Tsao C-H, Chen L-C, Kao C-C, Lue K-H, Huang J-L. Chronic mucocutaneous candidiasis in a 6-year-old boy. J Microbiol Immunol Infect (2004) 37:196–9. [PubMed] [Google Scholar]

60. De Moraes-Vasconcelos D, Orii NM, Romano CC, Iqueoka RY, Duarte AJS. Characterization of the cellular immune function of patients with chronic mucocutaneous candidiasis. Clin Exp Immunol (2001) 123:247–53. 10.1046/j.1365-2249.2001.01430.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Akiba H, Motoki Y, Satoh M, Iwatsuki K, Kaneko F.Recalcitrant trichophytic granuloma associated with NK-cell deficiency in a SLE patient treated with corticosteroid. Eur J Dermatol (2001) 11:58–62. [PubMed] [Google Scholar]

62. Schmidt S, Tramsen L, Hanisch M, Latgé J-P, Huenecke S, Koehl U, et al.Human natural killer cells exhibit direct activity against Aspergillus fumigatus hyphae, but not against resting conidia. J Infect Dis (2011) 203:430–5. 10.1093/infdis/jiq062 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Schmidt S, Tramsen L, Perkhofer S, Lass-Florl C, Hanisch M, Roger F, et al.Rhizopus oryzae hyphae are damaged by human natural killer (NK) cells, but suppress NK cell mediated immunity. Immunobiology (2013) 218:939–44. 10.1016/j.imbio.2012.10.013 [PubMed] [CrossRef] [Google Scholar]

64. Schmidt S, Schneider A, Demir A, Lass-Flörl C, Lehrnbecher T. Natural killer cell-mediated damage of clinical isolates of mucormycetes. Mycoses (2016) 59:34–8. 10.1111/myc.12431 [PubMed] [CrossRef] [Google Scholar]

65. Bouzani M, Ok M, McCormick A, Ebel F, Kurzai O, Morton CO, et al.Human NK cells display important antifungal activity against Aspergillus fumigatus, which is directly mediated by IFN-γ release. J Immunol (2011) 187:1369–76. 10.4049/jimmunol.1003593 [PubMed] [CrossRef] [Google Scholar]

66. Hidore MR, Nabavi N, Reynolds CW, Henkart PA, Murphy JW. Cytoplasmic components of natural killer cells limit the growth of Cryptococcus neoformans. J Leukoc Biol (1990) 48:15–26. [PubMed] [Google Scholar]

67. Ma LL, Wang CLC, Neely GG, Epelman S, Krensky AM, Mody CH. NK cells use perforin rather than granulysin for anticryptococcal activity. J Immunol (2004) 173:3357–65. 10.4049/jimmunol.173.5.3357 [PubMed] [CrossRef] [Google Scholar]

68. Li SS, Kyei SK, Timm-McCann M, Ogbomo H, Jones GJ, Shi M, et al.The NK receptor NKp30 mediates direct fungal recognition and killing and is diminished in NK cells from HIV-infected patients. Cell Host Microbe (2013) 14:387–97. 10.1016/j.chom.2013.09.007 [PubMed] [CrossRef] [Google Scholar]

69. Benedetto N, Sabatini P, Sellitto C, Romano Carratelli C. Interleukin-2 and increased natural killer activity in mice experimentally infected with Aspergillus niger. Microbiologica (1988) 11:339–45. [PubMed] [Google Scholar]

70. Voigt J, Hünniger K, Bouzani M, Jacobsen ID, Barz D, Hube B, et al.Human natural killer cells acting as phagocytes against Candida albicans and mounting an inflammatory response that modulates neutrophil antifungal activity. J Infect Dis (2014) 209:616–26. 10.1093/infdis/jit574 [PubMed] [CrossRef] [Google Scholar]

71. Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, et al.Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature (2009) 460:1117–21. 10.1038/nature08264 [PubMed] [CrossRef] [Google Scholar]

72. Chai LYA, Netea MG, Sugui J, Vonk AG, van de Sande WWJ, Warris A, et al.Aspergillus fumigatus conidial melanin modulates host cytokine response. Immunobiology (2010) 215:915–20. 10.1016/j.imbio.2009.10.002 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Kozel TR, Gotschlich EC. The capsule of Cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages. J Immunol (1982) 129:1675–80. [PubMed] [Google Scholar]

74. Rappleye CA, Goldman WE. Fungal stealth technology. Trends Immunol (2008) 29:18–24. 10.1016/j.it.2007.10.001 [PubMed] [CrossRef] [Google Scholar]

75. Marr KJ, Jones GJ, Zheng C, Huston SM, Timm-McCann M, Islam A, et al.Cryptococcus neoformans directly stimulates perforin production and rearms NK cells for enhanced anticryptococcal microbicidal activity. Infect Immun (2009) 77:2436–46. 10.1128/IAI.01232-08 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Mueller-Leisse J, Brueggemann S, Bouzani M, Schmitt A-L, Einsele H, Loeffler J. Polymorphonuclear neutrophils and granulocytic myeloid-derived suppressor cells inhibit natural killer cell activity toward Aspergillus fumigatus. Med Mycol (2015) 53:622–9. 10.1093/mmy/myv030 [PubMed] [CrossRef] [Google Scholar]

77. Vitenshtein A, Charpak-Amikam Y, Yamin R, Bauman Y, Isaacson B, Stein N, et al.NK cell recognition of Candida glabrata through binding of NKp46 and NCR1 to fungal ligands Epa1, Epa6, and Epa7. Cell Host Microbe (2016) 20:527–34. 10.1016/j.chom.2016.09.008 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. de Groot PWJ, Bader O, de Boer AD, Weig M, Chauhan N. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot Cell (2013) 12:470–81. 10.1128/EC.00364-12 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Ogbomo H, Mody CH. Granule-dependent natural killer cell cytotoxicity to fungal pathogens. Front Immunol (2017) 7:692. 10.3389/fimmu.2016.00692 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Ziegler S, Weiss E, Schmitt A-L, Schlegel J, Burgert A, Terpitz U, et al.CD56 is a pathogen recognition receptor on human natural killer cells. Sci Rep (2017) 7:6138. 10.1038/s41598-017-06238-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Nabavi N, Murphy JW. Antibody-dependent natural killer cell-mediated growth inhibition of Cryptococcus neoformans. Infect Immun (1986) 51:556–62. [PMC free article] [PubMed] [Google Scholar]

82. Obata-Onai A, Hashimoto S, Onai N, Kurachi M, Nagai S, Shizuno K, et al.Comprehensive gene expression analysis of human NK cells and CD8(+) T lymphocytes. Int Immunol (2002) 14:1085–98. 10.1093/intimm/dxf086 [PubMed] [CrossRef] [Google Scholar]

83. Kataoka T, Shinohara N, Takayama H, Takaku K, Kondo S, Yonehara S, et al.Concanamycin A, a powerful tool for characterization and estimation of contribution of perforin- and Fas-based lytic pathways in cell-mediated cytotoxicity. J Immunol (1996) 156:3678–86. [PubMed] [Google Scholar]

84. Hellwig D, Voigt J, Bouzani M, Löffler J, Albrecht-Eckardt D, Weber M, et al.Candida albicans induces metabolic reprogramming in human NK cells and responds to perforin with a zinc depletion response. Front Microbiol (2016) 7:750. 10.3389/fmicb.2016.00750 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Kyei SK, Ogbomo H, Li S, Timm-mccann M, Xiang RF, Huston SM.Mechanisms by which interleukin-12 corrects defective NK cell anticryptococcal activity in HIV-infected patients. MBio (2016) 7:e00878–16. 10.1128/mBio.00878-16 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Duke RC, Persechini PM, Chang S, Liu C-C, Cohen JJ, Young JD. Purified perforin induces target cell lysis but not DNA fragmentation. J Exp Med (1989) 170:1451–6. 10.1084/jem.170.4.1451 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Law RHP, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, et al.The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature (2010) 468:447–51. 10.1038/nature09518 [PubMed] [CrossRef] [Google Scholar]

88. Ernst WA, Thoma-Uszynski S, Teitelbaum R, Ko C, Hanson DA, Clayberger C, et al.Granulysin, a T cell product, kills bacteria by altering membrane permeability. J Immunol (2000) 165:7102–8. 10.4049/jimmunol.165.12.7102 [PubMed] [CrossRef] [Google Scholar]

89. Gamen S, Hanson DA, Kaspar A, Naval J, Krensky AM, Anel A. Granulysin-induced apoptosis. I. Involvement of at least two distinct pathways. J Immunol (1998) 161:1758–64. [PubMed] [Google Scholar]

90. Kaspar AA, Okada S, Kumar J, Poulain FR, Drouvalakis KA, Kelekar A, et al.A distinct pathway of cell-mediated apoptosis initiated by granulysin. J Immunol (2001) 167:350–6. 10.4049/jimmunol.167.1.350 [PubMed] [CrossRef] [Google Scholar]

91. Krensky AM, Clayberger C. Biology and clinical relevance of granulysin. Tissue Antigens (2009) 73:193–8. 10.1111/j.1399-0039.2008.01218.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Okada S, Li Q, Whitin JC, Clayberger C, Krensky AM. Intracellular mediators of granulysin-induced cell death. J Immunol (2003) 171:2556–62. 10.4049/jimmunol.171.5.2556 [PubMed] [CrossRef] [Google Scholar]

93. El-Khoury M, Ligot R, Mahoney S, Stack CM, Perrone GG, Morton CO. The in vitro effects of interferon-gamma, alone or in combination with amphotericin B, tested against the pathogenic fungi Candida albicans and Aspergillus fumigatus. BMC Res Notes (2017) 10:364. 10.1186/s13104-017-2696-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Katti MK.Assessment of serum IL-1, IL-2 and IFN-γ levels in untreated pulmonary tuberculosis patients: role in pathogenesis. Arch Med Res (2011) 42:199–201. 10.1016/j.arcmed.2011.04.012 [PubMed] [CrossRef] [Google Scholar]

95. Screpanti V, Wallin RPA, Grandien A, Ljunggren HG. Impact of FASL-induced apoptosis in the elimination of tumor cells by NK cells. Mol Immunol (2005) 42:495–9. 10.1016/j.molimm.2004.07.033 [PubMed] [CrossRef] [Google Scholar]

96. Guerra C, Johal K, Morris D, Moreno S, Alvarado O, Gray D, et al.Control of Mycobacterium tuberculosis growth by activated natural killer cells. Clin Exp Immunol (2012) 168:142–52. 10.1111/j.1365-2249.2011.04552.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Madeo F, Herker E, Wissing S, Jungwirth H, Eisenberg T, Fröhlich KU.Apoptosis in yeast. Curr Opin Microbiol (2004) 7:655–60. 10.1016/j.mib.2004.10.012 [PubMed] [CrossRef] [Google Scholar]

98. Fröhlich KU, Fussi H, Ruckenstuhl C.Yeast apoptosis – from genes to pathways. Semin Cancer Biol (2007) 17:112–21. 10.1016/j.semcancer.2006.11.006 [PubMed] [CrossRef] [Google Scholar]

99. Mah AY, Cooper MA. Metabolic regulation of natural killer cell IFN-γ production. Crit Rev Immunol (2016) 36:131–47. 10.1615/CritRevImmunol.2016017387 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Algarra I, Ortega E, Serrano MJ, Alvarez de Cienfuegos G, Gaforio JJ. Suppression of splenic macrophage Candida albicans phagocytosis following in vivo depletion of natural killer cells in immunocompetent BALB/c mice and T-cell-deficient nude mice. FEMS Immunol Med Microbiol (2002) 33:159–63. 10.1111/j.1574-695X.2002.tb00586.x [PubMed] [CrossRef] [Google Scholar]

101. Park SJ, Hughes MA, Burdick M, Strieter RM, Mehrad B.Early NK cell-derived IFN-y is essential to host defense in neutropenic invasive aspergillosis. J Immunol (2009) 182:4306–12. 10.4049/jimmunol.0803462 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Boehm U, Klamp T, Groot M, Howard JC.Cellular responses to interferon-gamma. Annu Rev Immunol (1997) 15:749–95. 10.1146/annurev.immunol.15.1.749 [PubMed] [CrossRef] [Google Scholar]

103. Nagai H, Guo J, Choi H, Kurup V. Interferon-gamma and tumor necrosis factor-alpha protect mice from invasive aspergillosis. J Infect Dis (1995) 172:1554–60. 10.1093/infdis/172.6.1554 [PubMed] [CrossRef] [Google Scholar]

104. Homey B, Müller A, Zlotnik A. Chemokines: agents for the immunotherapy of cancer?Nat Rev Immunol (2002) 2:175–84. 10.1038/nri748 [PubMed] [CrossRef] [Google Scholar]

105. Richardson MD, Brownlie CE, Shankland GS. Enhanced phagocytosis and intracellular killing of Candida albicans by GM-CSF-activated human neutrophils. J Med Vet Mycol (1992) 30:433–41. 10.1080/02681219280000591 [PubMed] [CrossRef] [Google Scholar]

106. Roilides E, Holmes A, Blake C, Venzon D, Pizzo PA, Walsh TJ. Antifungal activity of elutriated human monocytes against Aspergillus fumigatus hyphae: enhancement by granulocyte-macrophage colony-stimulating factor and interferon-gamma. J Infect Dis (1994) 170:894–9. 10.1093/infdis/170.4.894 [PubMed] [CrossRef] [Google Scholar]

107. Fontaine T, Delangle A, Simenel C, Coddeville B, van Vliet SJ, van Kooyk Y, et al.Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. PLoS Pathog (2011) 7:e1002372. 10.1371/journal.ppat.1002372 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Robinet P, Baychelier F, Fontaine T, Picard C, Debré P, Vieillard V, et al.A polysaccharide virulence factor of a human fungal pathogen induces neutrophil apoptosis via NK cells. J Immunol (2014) 192:5332–42. 10.4049/jimmunol.1303180 [PubMed] [CrossRef] [Google Scholar]

109. Gresnigt MS, Bozza S, Becker KL, Joosten LAB, Abdollahi-Roodsaz S, van der Berg WB, et al.A polysaccharide virulence factor from Aspergillus fumigatus elicits anti-inflammatory effects through induction of interleukin-1 receptor antagonist. PLoS Pathog (2014) 10:e1003936. 10.1371/journal.ppat.1003936 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Becker KL, Aimanianda V, Wang X, Gresnigt MS, Ammerdorffer A, Jacobs CW, et al.Aspergillus cell wall chitin induces anti- and proinflammatory cytokines in human PBMCs via the Fc-γ receptor/Syk/PI3K pathway. MBio (2016) 7:e01823–15. 10.1128/mBio.01823-15 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Abad A, Fernández-Molina JV, Bikandi J, Ramírez A, Margareto J, Sendino J, et al.What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol (2010) 27:155–82. 10.1016/j.riam.2010.10.003 [PubMed] [CrossRef] [Google Scholar]

112. Müllbacher A, Eichner RD. Immunosuppression in vitro by a metabolite of a human pathogenic fungus. Proc Natl Acad Sci U S A (1984) 81:3835–7. 10.1073/pnas.81.12.3835 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Sutton P, Newcombe NR, Waring P, Mullbacher A. In vivo immunosuppressive activity of gliotoxin, a metabolite produced by human pathogenic fungi. Infect Immun (1994) 62:1192–8. [PMC free article] [PubMed] [Google Scholar]

114. Stanzani M, Orciuolo E, Lewis R, Kontoyiannis DP, Martins SLR, St. John LS, et al.Aspergillus fumigatus suppresses the human cellular immune response via gliotoxin-mediated apoptosis of monocytes. Blood (2005) 105:2258–65. 10.1182/blood-2004-09-3421 [PubMed] [CrossRef] [Google Scholar]

115. Tsunawaki S, Yoshida LS, Nishida S, Kobayashi T.Fungal metabolite gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase fungal metabolite gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase. Infect Immun (2004) 72:3373–82. 10.1128/IAI.72.6.3373-3382.2004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Yamada A, Kataoka T, Nagai K. The fungal metabolite gliotoxin: immunosuppressive activity on CTL-mediated cytotoxicity. Immunol Lett (2000) 71:27–32. 10.1016/S0165-2478(99)00155-8 [PubMed] [CrossRef] [Google Scholar]

117. Schneider A, Blatzer M, Posch W, Schubert R, Lass-Flörl C, Schmidt S, et al.Aspergillus fumigatus responds to natural killer (NK) cells with upregulation of stress related genes and inhibits the immunoregulatory function of NK cells. Oncotarget (2016) 7:71062–71. 10.18632/oncotarget.12616 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Murphy JW, Zhou A, Wong SC. Direct interactions of human natural killer cells with Cryptococcus neoformans inhibit granulocyte-macrophage colony-stimulating factor and tumor necrosis factor alpha production. Infect Immun (1997) 65:4564–71. [PMC free article] [PubMed] [Google Scholar]

119. Lamoth F, Juvvadi PR, Steinbach WJ.Heat shock protein 90 (Hsp90): a novel antifungal target against Aspergillus fumigatus. Crit Rev Microbiol (2014) 42:1–12. 10.3109/1040841X.2014.947239 [PubMed] [CrossRef] [Google Scholar]

120. Blatzer M, Binder U, Haas H. The metalloreductase FreB is involved in adaptation of Aspergillus fumigatus to iron starvation. Fungal Genet Biol (2011) 48:1027–33. 10.1016/j.fgb.2011.07.009 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Lipscomb MF, Alvarellos T, Toews GB, Tompkins R, Evans Z, Koo G, et al.Role of natural killer cells in resistance to Cryptococcus neoformans infections in mice. Am J Pathol (1987) 128:354–61. [PMC free article] [PubMed] [Google Scholar]

122. Tewari RP, Von Behren LA. Immune responses in histoplasmosis, a prototype of respiratory mycoses. Indian J Chest Dis Allied Sci (2000) 42:265–9. [PubMed] [Google Scholar]

123. Morrison BE, Park SJ, Mooney JM, Mehrad B. Chemokine-mediated recruitment of NK cells is a critical host defense mechanism in invasive aspergillosis. J Clin Invest (2003) 112:1862–70. 10.1172/JCI18125 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Hidore MR, Murphy JW. Natural cellular resistance of beige mice against Cryptococcus neoformans. J Immunol (1986) 137:3624–31. [PubMed] [Google Scholar]

125. Hidore MR, Murphy JW. Correlation of natural killer cell activity and clearance of Cryptococcus neoformans from mice after adoptive transfer of splenic nylon wool-nonadherent cells. Infect Immun (1986) 51:547–55. [PMC free article] [PubMed] [Google Scholar]

Natural Killer Cells in Antifungal Immunity (2024)
Top Articles
Latest Posts
Article information

Author: Dean Jakubowski Ret

Last Updated:

Views: 6102

Rating: 5 / 5 (70 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Dean Jakubowski Ret

Birthday: 1996-05-10

Address: Apt. 425 4346 Santiago Islands, Shariside, AK 38830-1874

Phone: +96313309894162

Job: Legacy Sales Designer

Hobby: Baseball, Wood carving, Candle making, Jigsaw puzzles, Lacemaking, Parkour, Drawing

Introduction: My name is Dean Jakubowski Ret, I am a enthusiastic, friendly, homely, handsome, zealous, brainy, elegant person who loves writing and wants to share my knowledge and understanding with you.