Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth (2024)

1. Sharma R.R., Singh D., Singh R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biol. Control. 2009;50:205–221. doi:10.1016/j.biocontrol.2009.05.001. [CrossRef] [Google Scholar]

2. Savary S., Ficke A., Aubertot N.J., Hollier C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. 2012;4:519–537. doi:10.1007/s12571-012-0200-5. [CrossRef] [Google Scholar]

3. Liu J., Sui Y., Wisniewski M., Droby S., Liu Y. Review: Utilization of antagonistic yeast to manage postharvest fungal diseases of fruits. Int. J. Food Microbiol. 2013;167:153–160. doi:10.1016/j.ijfoodmicro.2013.09.004. [PubMed] [CrossRef] [Google Scholar]

4. Ghorbanpour M., Omidvari M., Abbaszadeh-Dahaji P., Omidvar R., Kariman K. Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol. Control. 2018;117:147–157. doi:10.1016/j.biocontrol.2017.11.006. [CrossRef] [Google Scholar]

5. Almeida F.B., Rodrigues L.M., Coelho C. The still underestimated problem of fungal diseases worldwide. Front. Microbiol. 2019;10:214. doi:10.3389/fmicb.2019.00214. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Jain A., Sarsaiya S., Wu Q., Lu Y., Shi J. A review of plant leaf fungal diseases and its environment speciation. Bioengineered. 2019;10:409–424. doi:10.1080/21655979.2019.1649520. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Benítez T., Rincón M.A., Limón C.M., Codón C.A. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 2004;7:249–260. [PubMed] [Google Scholar]

8. Escrivá L., Front G., Manyes L. In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food Chem. Toxicol. 2015;78:185–206. doi:10.1016/j.fct.2015.02.005. [PubMed] [CrossRef] [Google Scholar]

9. Zhang D.D., Wang Y.X., Chen Y.J., Kong Q.Z., Gui J.Y., Li Y.N., Bao M.Y., Dai X. Identification and characterization of a pathogenicity-related gene VdCYP1 from Verticillium dahliae. Sci. Rep. 2016;6:27979. doi:10.1038/srep27979. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Doehlemann G., Ökmen B., Zhu W., Sharon A. Plant pathogenic fungi. Microbiol. Spectr. 2017;5:1–23. doi:10.1128/microbiolspec.FUNK-0023-2016. [PubMed] [CrossRef] [Google Scholar]

11. Krylov B.V., Petruk I.M., Glushko I.N., Khaldeeva V.E., Mokeeva L.V., Bilanenko N.E., Lebedin S.Y., Eremin A.S., Nifantiev E.N. Carbohydrate specificity of antibodies against phytopathogenic fungi of the Aspergillus genus. Appl. Biochem. Microbiol. 2018;54:522–527. doi:10.1134/S0003683818050095. [CrossRef] [Google Scholar]

12. Li H., Bian R., Liu Q., Yang L., Pang T., Salaipeth L., Andika B.I., Kondo H., Sun L. Identification of a novel hypovirulence-inducing Hypovirus from Alternaria alternaria. Front. Microbiol. 2019;10:1076. doi:10.3389/fmicb.2019.01076. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Abbas A., Khan U.S., Khan U.W., Saleh A.T., Khan U.H.M., Ullah S., Ali A., Ikram M. Antagonist effects of strains of Bacillus spp. against Rhizoctonia solani for their protection against several plant diseases: Alternatives to chemical pesticides. C. R. Biol. 2019;342:124–135. doi:10.1016/j.crvi.2019.05.002. [PubMed] [CrossRef] [Google Scholar]

14. Tilman D., Cassman K.G., Matson P.A., Naylor R., Polasky S. Agricultural sustainability and intensive production practices. Nature. 2002;418:671–677. doi:10.1038/nature01014. [PubMed] [CrossRef] [Google Scholar]

15. Alizadeh M., Vasebi Y., Safaie N. Microbial antagonists against plant pathogens in Iran: A review. Open Agric. 2020;5:404–440. doi:10.1515/opag-2020-0031. [CrossRef] [Google Scholar]

16. Rahman S.F., Singh E., Pieterse C.M.J., Schenk P.M. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 2018;267:102–111. doi:10.1016/j.plantsci.2017.11.012. [PubMed] [CrossRef] [Google Scholar]

17. Grasswitz T.R. Integrated pest management (IPM) for small-scale farms in developed economies: Challenges and opportunities. Insects. 2019;10:179. doi:10.3390/insects10060179. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Thambugala K.M., Daranagama D.A., Phillips A.J.L., Kannangara S.D., Promputtha I. Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Front. Cell. Infect. Microbiol. 2020;10:718. doi:10.3389/fcimb.2020.604923. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Subedi P., Gattoni K., Liu W., Lawrence K.S., Park S.W. Current utility of plant growth-promoting rhizobacteria as biological control agents towards plant-parasitic nematodes. Plants. 2020;9:1167. doi:10.3390/plants9091167. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Niu B., Wang W., Yuan Z., Sederoff R.R., Sederoff H., Chiang V.L., Borriss R. Microbial interactions within multiple-strain Biological Control Agents impact soil-borne plant disease. Front Microbiol. 2020;11:585404. doi:10.3389/fmicb.2020.585404. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Savita S.A. Fungi as biological control agents. In: Giri B., Prasad R., Wu Q.S., Varma A., editors. Biofertilizers for Sustainable Agriculture and Environment: Soil Biology. Volume 55. Springer; Cham, Switzerland: 2019. [CrossRef] [Google Scholar]

22. Fiorentino N., Ventorino V., Woo S.L., Pepe O., De Rosa A., Gioia L., Romano I., Lombardi N., Napolitano M., Colla G., et al. Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Front. Plant Sci. 2018;9:743. doi:10.3389/fpls.2018.00743. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Montanarella L., Panagos P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy. 2021;100:104950. doi:10.1016/j.landusepol.2020.104950. [CrossRef] [Google Scholar]

24. Gajera H., Domadiya R., Patel S., Kapopara M., Golakiya B. Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system—A review. Curr. Res. Microbiol. Biotechnol. 2013;1:133–142. [Google Scholar]

25. Martínez-Medina A., Alguacil M.D.M., Pascual J.A., Van Wees S.C.M. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J. Chem. Ecol. 2014;40:804–815. doi:10.1007/s10886-014-0478-1. [PubMed] [CrossRef] [Google Scholar]

26. Jaroszuk-Ściseł J., Tyśkiewicz R., Nowak A., Ozimek E., Majewska M., Hanaka A., Tyśkiewicz K., Pawlik A., Janusz G. Phytohormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic Trichoderma DEMTkZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. Int. J. Mol. Sci. 2019;20:4923. doi:10.3390/ijms20194923. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Howell C.R. Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Dis. 2003;87:1–10. doi:10.1094/PDIS.2003.87.1.4. [PubMed] [CrossRef] [Google Scholar]

28. Kamala T., Devi S.I., Sharma K.C., Kennedy K. Phylogeny and taxonomical investigation of Trichoderma spp. from Indian region of Indo-Burma biodiversity hot spot region with special reference to Manipur. BioMed Res. Int. 2015:285261. doi:10.1155/2015/285261. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Błaszczyk L., Siwulski M., Sobieralski K., Lisiecka J., Jędryczka M. Trichoderma spp.—Application and prospects for use in organic farming and industry. J. Plant Prot. Res. 2014;54:309–317. doi:10.2478/jppr-2014-0047. [CrossRef] [Google Scholar]

30. Samuels G.J., Dodd S.L., Lu B.S., Petrini O., Schroers H.J., Druzhinina I.S. The Trichoderma koningii aggregate species. Stud. Mycol. 2006;56:67–133. doi:10.3114/sim.2006.56.03. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Hassan M.M., Farid M.A., Gaber A. Rapid identification of Trichoderma koningiopsis and Trichoderma longibrachiatum using sequence-characterized amplified region markers. Egypt J. Biol. Pest. Control. 2019;29:13. doi:10.1186/s41938-019-0113-0. [CrossRef] [Google Scholar]

32. Bissett J., Gams W., Jaklitsch W., Samuels G.J. Accepted Trichoderma names in the year 2015. IMA Fungus. 2015;6:263–295. doi:10.5598/imafungus.2015.06.02.02. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Marik T., Tyagi C., Balázs D., Urbán P., Szepesi Á., Bakacsy L., Endre G., Rakk D., Szekeres A., Andersson M.A., et al. Structural diversity and bioactivities of peptaibol compounds from the longibrachiatum clade of the filamentous fungal genus Trichoderma. Front. Microbiol. 2019;10:1434. doi:10.3389/fmicb.2019.01434. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Tamandegani P.R., Marik T., Zafari D., Balázs D., Vágvölgyi C., Szekeres A., Kredics L. Changes in peptaibol production of Trichoderma species during in vitro antagonistic interactions with fungal plant pathogens. Biomolecules. 2020;10:730. doi:10.3390/biom10050730. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Zin N.A., Badaluddin N.A. Biological functions of Trichoderma spp. for agriculture applications. Ann. Agric. Sci. 2020;65:168–178. doi:10.1016/j.aoas.2020.09.003. [CrossRef] [Google Scholar]

36. Cocaign A., Bui L.C., Silar P., Chan Ho Tong L., Busi F., Lamouri A., Mougin C., Rodrigues-Lima F., Dupret J.M., Dairou J. Biotransformation of Trichoderma spp. and their tolerance to aromatic amines, a major class of pollutants. Appl. Environ. Microbiol. 2013;79:4719–4726. doi:10.1128/AEM.00989-13. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. De Padua J.C., dela Cruz T.E.E. Isolation and characterization of nickel-tolerant Trichoderma strains from marine and terrestrial environments. J. Fungi. 2021;7:591. doi:10.3390/jof7080591. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Escudero-Leyva E., Alfaro-Vargas P., Muñoz-Arrieta R., Charpentier-Alfaro C., Granados-Montero M.M., Valverde-Madrigal K.S., Pérez-Villanueva M., Méndez-Rivera M., Rodríguez-Rodríguez C.E., Chaverri P., et al. Tolerance and biological removal of fungicides by Trichoderma species isolated from the endosphere of wild Rubiaceae plants. Front. Agron. 2022;3:772170. doi:10.3389/fa*gro.2021.772170. [CrossRef] [Google Scholar]

39. Alothman Z., Bahkali A., Elgorban A., Al-Otaibi M., Ghfar A., Gabr S., Wabaidur S., Habila M., Ahmed A. Bioremediation of explosive TNT by Trichoderma viride. Molecules. 2020;25:1393. doi:10.3390/molecules25061393. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Morales-Barrera L., Cristiani-Urbina E. Hexavalent chromium removal by a Trichoderma inhamatum fungal strain isolated from tannery effluent. Water Air Soil Pollut. 2008;187:327–336. doi:10.1007/s11270-007-9520-z. [CrossRef] [Google Scholar]

41. Sandle T. Trichoderma. In: Batt C.A., Tortorello M.L., editors. Encyclopedia of Food Microbiology. 2nd ed. Academic Press; Cambridge, MA, USA: 2014. pp. 644–646. [CrossRef] [Google Scholar]

42. Qiao M., Du X., Zhang Z., Xu J.P., Yu Z.F. Three new species of soil-inhabiting Trichoderma from southwest China. Myco*keys. 2018;44:63–80. doi:10.3897/myco*keys.44.30295. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Eastburn D.M., Butler E.E. Effect of soil moisture and temperature on the saprophytic ability of Trichoderma harzianum. Mycologia. 1991;83:257–263. doi:10.2307/3759985. [CrossRef] [Google Scholar]

44. Poosapati S., Ravulapalli P.D., Tippirishetty N., Vishwanathaswamy D.K., Chunduri S. Selection of high temperature and salinity tolerant Trichoderma isolates with antagonistic activity against Sclerotium rolfsii. SpringerPlus. 2014;3:1–11. doi:10.1186/2193-1801-3-641. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Mukhopadhyay R., Kumar D. Trichoderma: A beneficial antifungal agent and insights into its mechanisms of biocontrol potential. Egypt. J. Biol. Pest Control. 2020;30:133. doi:10.1186/s41938-020-00333-x. [CrossRef] [Google Scholar]

46. Siddiquee S. Practical Handbook of the Biology and Molecular Diversity of Trichoderma Species from Tropical Regions. Springer; Cham, Switzerland: 2017. Morphology-based characterization of Trichoderma species; pp. 41–73. [CrossRef] [Google Scholar]

47. Weindling R. Trichoderma lignorum as a parasite of other soil fungi. Phytopathology. 1932;22:837–845. [Google Scholar]

48. Kumar M.A., Sharma P. Morphological characterization of biocontrol isolates of Trichoderma to study the correlation between morphological characters and biocontrol efficacy. Int. Lett. Nat. Sci. 2016;55:57–67. doi:10.18052/www.scipress.com/ILNS.55.57. [CrossRef] [Google Scholar]

49. Błaszczyk L., Basińska-Barczak A., Ćwiek-Kupczyńska H., Gromadzka K., Popiel D., Stępień Ł. Suppressive effect of Trichoderma spp. on toxigenic Fusarium species. Pol. J. Microbiol. 2017;66:85–100. doi:10.5604/17331331.1234996. [PubMed] [CrossRef] [Google Scholar]

50. Saravanakumar K., Yu C., Dou K., Wang M., Li Y., Chen J. Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biol. Control. 2016;94:37–46. doi:10.1016/j.biocontrol.2015.12.001. [CrossRef] [Google Scholar]

51. Rai S., Kashyap P.L., Kumar S., Srivastava A.K., Ramteke P.W. Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere. SpringerPlus. 2016;5:1939. doi:10.1186/s40064-016-3657-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Srivastava M., Kumar V., Shahid M., Pandey S., Singh A. Trichoderma—A potential and effective bio fungicide and alternative source against notable phytopathogens: A review. Afr. J. Agric. Res. 2016;11:310–316. doi:10.5897/AJAR2015.9568. [CrossRef] [Google Scholar]

53. Hoyos-Carvajal L., Orduz S., Bissett J. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biol. Control. 2009;51:409–416. doi:10.1016/j.biocontrol.2009.07.018. [CrossRef] [Google Scholar]

54. Grant M.R., Jones J.D. Hormone (dis)harmony moulds plant health and disease. Science. 2009;324:750–752. doi:10.1126/science.1173771. [PubMed] [CrossRef] [Google Scholar]

55. Pieterse C.M.J., Leon-Reyes A., Van der Ent S., Van Wees S.C.M. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 2009;5:308–316. doi:10.1038/nchembio.164. [PubMed] [CrossRef] [Google Scholar]

56. Čarná M., Repka V., Skůpa P., Šturdík E. Auxins in defense strategies. Biologia. 2014;69:1255–1263. doi:10.2478/s11756-014-0431-3. [CrossRef] [Google Scholar]

57. Sánchez-Montesinos B., Santos M., Moreno-Gavíra A., Marín-Rodulfo T., Gea F.J., Diánez F. Biological control of fungal diseases by Trichoderma aggressivum f. europaeum and its compatibility with fungicides. J. Fungi. 2021;7:598. doi:10.3390/jof7080598. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Gea F.J., Navarro M.J., Santos M., Diánez F., Carrasco J. Control of fungal diseases in mushroom crops while dealing with fungicide resistance: A review. Microorganisms. 2021;9:585. doi:10.3390/microorganisms9030585. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Park M.S., Bae K.S., Yu S.H. Two new species of Trichoderma associated with green mold of oyster mushroom cultivation in Korea. Mycobiology. 2006;34:111–113. doi:10.4489/MYCO.2006.34.3.111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Szczech M., Staniaszek M., Habdas H., Uliński Z., Szymański J. Trichoderma spp.—The cause of green mold on polish mushroom farms. J. Fruit Ornam. Plant Res. 2008;69:105–114. doi:10.2478/v10032-008-0025-0. [CrossRef] [Google Scholar]

61. Pfordt A., Schiwek S., Karlovsky P., von Tiedemann A. Trichoderma afroharzianum ear rot–a new disease on maize in Europe. Front. Agron. 2020;2:547758. doi:10.3389/fa*gro.2020.547758. [CrossRef] [Google Scholar]

62. Ram R.M., Singh H.B. Trichoderma spp.: An opportunistic pathogen. Biotech Today. 2018;8:16–24. doi:10.5958/2322-0996.2018.00013.3. [CrossRef] [Google Scholar]

63. Vishwakarma K., Kumar N., Shandilya C., Mohapatra S., Bhayana S., Varma A. Revisiting plant–microbe interactions and microbial consortia application for enhancing sustainable agriculture: A review. Front. Microbiol. 2020;11:560406. doi:10.3389/fmicb.2020.560406. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Rush T.A., Shrestha H.K., Gopalakrishnan Meena M., Spangler M.K., Ellis J.C., Labbé J.L., Abraham P.E. Bioprospecting Trichoderma: A systematic roadmap to screen genomes and natural products for biocontrol applications. Front. Fungal Biol. 2021;2:716511. doi:10.3389/ffunb.2021.716511. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Kovács C., Csótó A., Pál K., Nagy A., Fekete E., Karaffa L., Kubicek C.P., Sándor E. The biocontrol potential of endophytic Trichoderma fungi isolated from Hungarian grapevines. Part I. Isolation, identification and in vitro studies. Pathogens. 2021;10:1612. doi:10.3390/pathogens10121612. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. EU Pesticides Database. [(accessed on 24 January 2022)]. Available online: https://ec.europa.eu/food/plants/pesticides/eu-pesticides-database_pl

67. BPDB: Bio-Pesticides Database. [(accessed on 24 January 2022)]. Available online: https://sitem.herts.ac.uk/aeru/bpdb/atoz.htm

68. Biopesticide Products and Active Ingredients Registered for Use in USA by the United States Environmental Protection Agency (EPA) [(accessed on 24 January 2022)]; Available online: https://www.epa.gov/ingredients-used-pesticide-products/biopesticide-active-ingredients

69. List of Trichoderma-Based Biopesticides Registered in Brazil. [(accessed on 24 January 2022)]. Available online: https://www.agrolink.com.br/agrolinkfito/busca-direta-produto

70. Registered Biocontrol and Biopesticide Products around the World. [(accessed on 24 January 2022)]. Available online: https://bioprotectionportal.com/

71. Registered Pesticide Products in Canada. [(accessed on 24 January 2022)]. Available online: https://pr-rp.hc-sc.gc.ca/pi-ip/result-eng.php?1=0&2=501&3=pr&4=n&5=1&6=ASC&7=B&8=E

72. Registered Bio-Fungicides with Trichoderma as the Active Ingredient Use in New Zealand and Australia. [(accessed on 24 January 2022)]. Available online: https://agrimm.co.nz/

73. Chaverri P., Branco-Rocha F., Jaklitsch W., Gazis R., Degenkolb T., Samuels G.J. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia. 2015;107:558–590. doi:10.3852/14-147. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Fanelli F., Liuzzi V.C., Logrieco A.F., Altomare C. Genomic characterization of Trichoderma atrobrunneum (T. harzianum species complex) ITEM 908: Insight into the genetic endowment of a multi-target biocontrol strain. BMC Genom. 2018;19:662. doi:10.1186/s12864-018-5049-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Druzhinina I.S., Seidl-Seiboth V., Herrera-Estrella A., Horwitz B.A., Kenerley C.M., Monte E., Mukherjee P.K., Zeilinger S., Grigoriev I.V., Kubicek C.P. Trichoderma: The genomics of opportunistic success. Nat. Rev. Microbiol. 2011;9:749–759. doi:10.1038/nrmicro2637. [PubMed] [CrossRef] [Google Scholar]

76. Seidl-Seiboth V., Ihrmark K., Druzhinina I.S., Karlsson M. Molecular evolution of Trichoderma chitinases. In: Gupta V.K., Schmoll M., Herrera-Estrella A., Upadhyay R.S., Druzhinina I., Tuohy M.G., editors. Biotechnology and Biology of Trichoderma. Elsevier; Oxford, UK: 2014. pp. 67–78. [CrossRef] [Google Scholar]

77. Mukherjee M., Mukherjee P.K., Horwitz B.A., Zachow C., Berg G., Zeilinger S. Trichoderma-plant-pathogen interactions: Advances in genetics of biological control. Indian J. Microbiol. 2012;53:522–529. doi:10.1007/s12088-012-0308-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Moreno-Ruiz D., Lichius A., Turra D., Di Pietro A., Zeilinger S. Chemotropism assays for plant symbiosis and mycoparasitism related compound screening in Trichoderma atroviride. Front. Microbiol. 2020;11:601251. doi:10.3389/fmicb.2020.601251. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Suarez M.B., Vizcaino J.A., Llobell A., Monte E. Characterization of genes encoding novel peptidases in the biological fungus Trichoderma harzianum CECT 2413 using the TrichoEST functional genomics approach. Curr. Genet. 2007;51:331–342. doi:10.1007/s00294-007-0130-5. [PubMed] [CrossRef] [Google Scholar]

80. Seidl V., Song L., Lindquist E., Gruber S., Koptchinskiy A., Zeilinger S., Schmoll M., Martínez P., Sun J., Grigoriev I., et al. Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genom. 2009;10:567. doi:10.1186/1471-2164-10-567. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Rocha-Ramirez V., Omero C., Chet I., Horwitz B.A., Herrera-Estrella A. Trichoderma atroviride G-protein alpha-subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryot. Cell. 2002;1:594–605. doi:10.1128/EC.1.4.594-605.2002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Reithner B., Brunner K., Schuhmacher R., Peissl I., Seidl V., Krska R., Zeilinger S. The G protein α subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet. Biol. 2005;42:749–760. doi:10.1016/j.fgb.2005.04.009. [PubMed] [CrossRef] [Google Scholar]

83. Schmoll M. The information highways of a biotechnological workhorse—Signal transduction in Hypocrea jecorina. BMC Genom. 2008;9:430. doi:10.1186/1471-2164-9-430. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Almeida F.B., Cerqueira F.M., Silva Rdo N., Ulhoa C.J., Lima A.L. Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: Evaluation of coiling and hydrolytic enzyme production. Biotechnol. Lett. 2007;29:1189–1193. doi:10.1007/s10529-007-9372-z. [PubMed] [CrossRef] [Google Scholar]

85. Mukherjee P.K. Genomics of biological control—Whole genome sequencing of two mycoparasitic Trichoderma spp. Curr. Sci. 2011;101:268. [Google Scholar]

86. Khare E., Kumar S., Kim K. Role of peptaibols and lytic enzymes of Trichoderma cerinum Gur1 in biocontrol of Fusarium oxysporum and chickpea wilt. Environ. Sustain. 2018;1:39–47. doi:10.1007/s42398-018-0001-7. [CrossRef] [Google Scholar]

87. Martin K., McDougall B.M., McIlroy S., Chen J., Seviour R.J. Biochemistry and molecular biology of exocellular fungal β-(1,3)- and β-(1,6)-glucanases. FEMS Microbiol. Rev. 2007;31:168–192. doi:10.1111/j.1574-6976.2006.00055.x. [PubMed] [CrossRef] [Google Scholar]

88. Matroudi S., Zamani M.R., Motallebi M. Molecular cloning of chitinase 33 (chit33) gene from Trichoderma atroviride. Braz. J. Microbiol. 2008;39:433–437. doi:10.1590/S1517-83822008000300005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Kang X., Kirui A., Muszyński A., Dickwella Widanage M.C., Chen A., Azadi P., Wang P., Mentink-Vigier F., Wang T. Molecular architecture of fungal cell wall revealed by solid-state NMR. Nat. Commun. 2018;9:2747. doi:10.1038/s41467-018-05199-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Ribeiro M.S., de Paula R.G., Voltan A.R., de Castro R.G., Carraro C.B., de Assis L.J., Steindorff A.S., Goldman G.H., Silva R.N., Ulhoa C.J., et al. Endo β 1,3 glucanase (GH16 family) from Trichoderma harzianum participates in cell wall biogenesis but is not essential for antagonism against plant pathogens. Biomolecules. 2019;9:781. doi:10.3390/biom9120781. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Sood M., Kapoor D., Kumar V., Sheteiwy M.S., Ramakrishnan M., Landi M., Araniti F., Sharma A. Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants. 2020;9:762. doi:10.3390/plants9060762. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Loc N.H., Huy N.D., Quang H.T., Lan T.T., Ha T.T.T. Characterization and antifungal activity of extracellular chitinase from a biocontrol fungus, Trichoderma asperellum PQ34. Mycology. 2020;11:38–48. doi:10.1080/21501203.2019.1703839. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Hartl L., Zach S., Seidl-Seiboth V. Fungal chitinases: Diversity, mechanistic properties and biotechnological potential. Appl. Microbiol. Biotechnol. 2012;93:533–543. doi:10.1007/s00253-011-3723-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Hamid R., Khan M.A., Ahmad M., Ahmad M.M., Abdin M.Z., Musarrat J., Javed S. Chitinases: An update. J. Pharm. Bioallied Sci. 2013;5:21–29. doi:10.4103/0975-7406.106559. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Duo-Chuan L. Review of fungal chitinases. Mycopathologia. 2006;161:345–360. doi:10.1007/s11046-006-0024-y. [PubMed] [CrossRef] [Google Scholar]

96. De Marco J.L., Felix C.R. Purification and characterization of a β-glucanase produced by Trichoderma harzianum showing biocontrol potential. Braz. Arch. Biol. Technol. 2007;50:21–29. doi:10.1590/S1516-89132007000100003. [CrossRef] [Google Scholar]

97. Vieira P.M., Coelho A.S.G., Steindorff A.S., de Siqueira S.J.L., do Nascimento Silva R., Ulhoa C.J. Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application. BMC Genom. 2013;14:177. doi:10.1186/1471-2164-14-177. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Djonović S., Pozo M.J., Kenerley C.M. Tvbgn3, a beta-1,6-glucanase from the biocontrol fungus Trichoderma virens, is involved in mycoparasitism and control of Pythium ultimum. Appl. Environ. Microbiol. 2006;72:7661–7670. doi:10.1128/AEM.01607-06. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Mallikharjuna Rao K.L.N., Raju K.S., Ravisankar H. Cultural condition on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere. Braz. J. Microbiol. 2016;47:25–32. doi:10.1016/j.bjm.2015.11.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Gueye N., Kumar G.K., Ndiaye M., Sall S.Y.D., Ndiaye M.A.F., Diop T.A., Ram M.R. Factors affecting the chitinase activity of Trichoderma asperellum isolated from agriculture field soils. J. Appl. Biol. Biotechnol. 2020;8:41–44. doi:10.7324/JABB.2020.80207. [CrossRef] [Google Scholar]

101. De Souza P.M., De Assis Bittencourt M.L., Caprara C.C., De Freitas M., De Almeida R.P.C., Silveira D., Fonseca Y.M., Ferreira Filho E.X., Pessoa Junior A., Megalhães P.O. A biotechnology perspective of fungal proteases. Braz. J. Microbiol. 2015;46:337–346. doi:10.1590/S1517-838246220140359. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. De Marco J.L., Felix C.R. Characterization of a protease produced by a Trichoderma harzianum isolate which controls cocoa plant witches’ broom disease. BMC Biochem. 2002;3:3. doi:10.1186/1471-2091-3-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Pozo M.J., Baek J.M., García J.M., Kenerley C.M. Functional analysis of tvsp1, a serine protease-encoding gene in the biological agent Trichoderma virens. Fungal Genet. Biol. 2004;41:336–348. doi:10.1016/j.fgb.2003.11.002. [PubMed] [CrossRef] [Google Scholar]

104. Deng J.-J., Huang W.-Q., Li Z.-W., Lu D.-L., Zhang Y., Luo X.-C. Biocontrol activity of recombinant aspartic protease from Trichoderma harzianum against pathogenic fungi. Enzyme Microb. Technol. 2018;112:35–42. doi:10.1016/j.enzmictec.2018.02.002. [PubMed] [CrossRef] [Google Scholar]

105. Delgado-Jarana J., Rincón A.M., Benítez T. Aspartyl protease from Trichoderma harzianum CECT 2413: Cloning and characterization. Microbiology. 2002;148:1305–1315. doi:10.1099/00221287-148-5-1305. [PubMed] [CrossRef] [Google Scholar]

106. Eslahi N., Kowsari M., Zamani M.R., Motallebi M. Correlation study between biochemical and molecular pathways of Trichoderma harzianum recombinant strains on plant growth and health. J. Plant Growth Regul. 2021:1–17. doi:10.1007/s00344-021-10396-1. [CrossRef] [Google Scholar]

107. Neumann N.K., Stoppacher N., Zeilinger S., Degenkolb T., Bruckner H., Schuhmacher R. The peptaibiotics database—A comprehensive online source. Chem. Biodivers. 2015;12:743–751. doi:10.1002/cbdv.201400393. [PubMed] [CrossRef] [Google Scholar]

108. Daniel J.F., Filho E.R. Peptaibols of Trichoderma. Nat. Prod. Rep. 2007;24:1128–1141. doi:10.1039/b618086h. [PubMed] [CrossRef] [Google Scholar]

109. Zeilinger S., Gruber S., Bansal R., Mukherjee P.K. Secondary metabolism in Trichoderma—Chemistry meets genomics. Fungal Biol. Rev. 2016;30:74–90. doi:10.1016/j.fbr.2016.05.001. [CrossRef] [Google Scholar]

110. Siddiquee S. Fungal volatile organic compounds: Emphasis on their plant growth-promoting. In: Choudhary D., Sharma A., Agarwal P., Varma A., Tuteja N., editors. Volatiles and Food Security. Springer; Singapore: 2017. pp. 313–333. [CrossRef] [Google Scholar]

111. De Zotti M., Sella L., Bolzonello A., Gabbatore L., Peggion C., Bortolotto A., Elmaghraby I., Tundo S., Favaron F. Targeted amino acid substitutions in a Trichoderma peptaibol confer activity against fungal plant pathogens and protect host tissues from Botrytis cinerea infection. Int. J. Mol. Sci. 2020;21:7521. doi:10.3390/ijms21207521. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Zeilinger S., García-Estrada C., Martín J.-F. Fungal secondary metabolites in the “OMICS” era. In: Zeilinger S., Martín J.-F., García-Estrada C., editors. Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites. 2nd ed. Springer; New York, NY, USA: 2015. pp. 1–12. [CrossRef] [Google Scholar]

113. Keller N.P., Turner G., Bennett J.W. Fungal secondary metabolism—From biochemistry to genomics. Nat. Rev. Microbiol. 2005;3:937–947. doi:10.1038/nrmicro1286. [PubMed] [CrossRef] [Google Scholar]

114. Baker S.E., Perrone G., Richardson A., Gallo A., Kubicek C.P. Phylogenomic analysis of polyketide synthase-encoding genes in Trichoderma. Microbiology. 2012;158:147–154. doi:10.1099/mic.0.053462-0. [PubMed] [CrossRef] [Google Scholar]

115. Atanasova L., Knox B.P., Kubicek C.P., Druzhinina I.S., Baker S.E. The polyketide synthase gene pks4 of Trichoderma reesei provides pigmentation and stress resistance. Eukaryot. Cell. 2013;12:1499–1508. doi:10.1128/EC.00103-13. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Yao L., Tan C., Song J., Yang Q., Yu L., Li X. Isolation and expression of two polyketide synthase genes from Trichoderma harzianum 88 during mycoparasitism. Braz. J. Microbiol. 2016;47:468–479. doi:10.1016/j.bjm.2016.01.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Siddiquee S. Recent advancements on the role and analysis of volatile compounds (VOCs) from Trichoderma. In: Gupta V.K., Schmoll M., Herrera-Estrella A., Upadhyay R.S., Druzhinina I., Tuohy M.G., editors. Biotechnology and Biology of Trichoderma. Elsevier; Amsterdam, The Netherlands: 2014. pp. 139–175. [CrossRef] [Google Scholar]

118. Liu S.-Y., Lo C.-T., Shibu M.A., Leu Y.-L., Jen B.-Y., Peng K.-C. Study on the anthraquinones separated from the cultivation of Trichoderma harzianum strain Th-R16 and their biological activity. J. Agric. Food Chem. 2009;57:7288–7292. doi:10.1021/jf901405c. [PubMed] [CrossRef] [Google Scholar]

119. Lin Y.R., Lo C.T., Li S.Y., Peng K.C. Involvement of pachybasin and emodin in self-regulation of Trichoderma harzianum mycoparasitic coiling. J. Agric. Food Chem. 2012;60:2123–2128. doi:10.1021/jf202773y. [PubMed] [CrossRef] [Google Scholar]

120. Scharf D.H., Brakhage A.A., Mukherjee P.K. Gliotoxin—Bane or boon? Environ. Microbiol. 2016;18:1096–1109. doi:10.1111/1462-2920.13080. [PubMed] [CrossRef] [Google Scholar]

121. Vargas W.A., Mukherjee P.K., Laughlin D., Wiest A., Moran-Diez M.E., Kenerley C.M. Role of gliotoxin in the symbiotic and pathogenic interactions of Trichoderma virens. Microbiology. 2014;160:2319–2330. doi:10.1099/mic.0.079210-0. [PubMed] [CrossRef] [Google Scholar]

122. Vinale F., Flematti G., Sivasithamparam K., Lorito M., Marra M., Skelton B.W., Ghisalberti E.L. Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J. Nat. Prod. 2009;72:2032–2035. doi:10.1021/np900548p. [PubMed] [CrossRef] [Google Scholar]

123. Oszust K., Cybulska J., Frąc M. How do Trichoderma genus fungi win a nutritional competition battle against soft fruit pathogens? A report on niche overlap nutritional potentiates. Int. J. Mol. Sci. 2020;21:4235. doi:10.3390/ijms21124235. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Woo S.L., Lorito M. Trichoderma-plant pathogen interactions. Soil Biol. Biochem. 2008;40:1–10. doi:10.1016/j.soilbio.2007.07.002. [CrossRef] [Google Scholar]

125. Khan A., Singh P., Srivastava A. Synthesis, nature and utility of universal iron chelator—Siderophore: A review. Microbiol. Res. 2018;212–213:103–111. doi:10.1016/j.micres.2017.10.012. [PubMed] [CrossRef] [Google Scholar]

126. Zhao L., Wang Y., Kong S. Effects of Trichoderma asperellum and its siderophores on endogenous auxin in Arabidopsis thaliana under iron-deficiency stress. Int. Microbiol. 2020;23:501–509. doi:10.1007/s10123-020-00122-4. [PubMed] [CrossRef] [Google Scholar]

127. Miethke M. Molecular strategies of microbial iron assimilation: From high-affinity complexes to cofactor assembly systems. Metallomics. 2013;5:15–28. doi:10.1039/C2MT20193C. [PubMed] [CrossRef] [Google Scholar]

128. Ghosh S.K., Banerjee S., Sengupta C. Siderophore production by antagonistic fungi. J. Biopestic. 2017;10:105–112. [Google Scholar]

129. Chowdappa S., Jagannath S., Konappa N., Udayashankar A.C., Jogaiah S. Detection and characterization of antibacterial siderophores secreted by endophytic fungi from Cymbidium aloifolium. Biomolecules. 2020;10:1412. doi:10.3390/biom10101412. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Srivastava M.P., Gupta S., Sharm Y.K. Detection of siderophore production from different cultural variables by CAS-agar plate assay. Asian J. Pharm. Pharmacol. 2018;4:66–69. doi:10.31024/ajpp.2018.4.1.11. [CrossRef] [Google Scholar]

131. Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M. Trichoderma species—Opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2004;2:43–56. doi:10.1038/nrmicro797. [PubMed] [CrossRef] [Google Scholar]

132. Mokhtar H., Aid D. Contribution in isolation and identification of some pathogenic fungi from wheat seeds, and evaluation of antagonistic capability of Trichoderma harzianum against those isolated fungi in vitro. Agri. Biol. J. North Am. 2013;4:145–154. doi:10.5251/abjna.2013.4.2.145.154. [CrossRef] [Google Scholar]

133. Segarra G., Casanova E., Aviles M., Trillas I. Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microb. Ecol. 2010;59:141–149. doi:10.1007/s00248-009-9545-5. [PubMed] [CrossRef] [Google Scholar]

134. Saravanakumar K., Wang M.-H. Isolation and molecular identification of Trichoderma species from wetland soil and their antagonistic activity against phytopathogens. Physiol. Mol. Plant Pathol. 2020;109:101458. doi:10.1016/j.pmpp.2020.101458. [CrossRef] [Google Scholar]

135. Montesano M., Brader G., Palva E.T. Pathogen derived elicitors: Searching for receptors in plants. Mol. Plant Pathol. 2003;4:73–79. doi:10.1046/j.1364-3703.2003.00150.x. [PubMed] [CrossRef] [Google Scholar]

136. Thakur M., Sohal B.S. Role of elicitors in inducing resistance in plants against pathogen infection: A review. ISRN Biochem. 2013:762412. doi:10.1155/2013/762412. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Harman G.E., Herrera-Estrella A.H., Horwitz B.A., Lorito M. Special issue: Trichoderma—From basic biology to biotechnology. Microbiology. 2012;158:1–2. doi:10.1099/mic.0.056424-0. [PubMed] [CrossRef] [Google Scholar]

138. Aljbory Z., Chen M.-S. Indirect plant defense against insect herbivores: A review. Insect Sci. 2018;25:2–23. doi:10.1111/1744-7917.12436. [PubMed] [CrossRef] [Google Scholar]

139. Bhaskar R., Xavier L.S.E., Udayakumaran G., Kumar D.S., Venkatesh R., Nagella P. Biotic elicitors: A boon for the in-vitro production of plant secondary metabolites. Plant Cell Tiss. Organ. Cult. 2021;147:1–18. doi:10.1007/s11240-021-02131-1. [CrossRef] [Google Scholar]

140. Jones J.D., Dangl J.L. The plant immune system. Nature. 2006;444:323–329. doi:10.1038/nature05286. [PubMed] [CrossRef] [Google Scholar]

141. Hanaka A., Ozimek E., Reszczyńska E., Jaroszuk-Ściseł J., Stolarz M. Plant tolerance to drought stress in the presence of supporting bacteria and fungi: An efficient strategy in horticulture. Horticulturae. 2021;7:390. doi:10.3390/horticulturae7100390. [CrossRef] [Google Scholar]

142. De Schutter K., Van Damme E.J.M. Protein-carbohydrate interactions as part of plant defense and animal immunity. Molecules. 2015;20:9029–9053. doi:10.3390/molecules20059029. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Jagodzik P., Tajdel-Zielińska M., Cieśla A., Marczak M., Ludwikow A. Mitogen-activated protein kinase cascades in plant hormone signalling. Front. Plant Sci. 2018;9:1387. doi:10.3389/fpls.2018.01387. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Ton J., Jakab G., Toquin V., Flors V., Iavicoli A., Maeder M.N., Métraux J.-P., Mauch-Mani B. Dissecting the β-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell. 2005;17:987–999. doi:10.1105/tpc.104.029728. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

145. Shoresh M., Harman G.E., Mastoury F. Induced systemic resistance and plant response to fungal biocontrol agents. Annu. Rev. Phytopathol. 2010;48:21–43. doi:10.1146/annurev-phyto-073009-114450. [PubMed] [CrossRef] [Google Scholar]

146. Hartman G.L., Pawlowski M.L., Chang H.-X., Hill C.B. Successful technologies and approaches used to develop and manage resistance against crop diseases and pests. In: Madramootoo C., editor. Woodhead Publishing Series in Food Science, Technology and Nutrition. Emerging Technologies for Promoting Food Security. Woodhead Publishing; Sawston, UK: 2016. pp. 43–66. [CrossRef] [Google Scholar]

147. Boccardo N.A., Segretin M.E., Hernandez I., Mirkin F.G., Chaćon O., Lopez Y., Borrás-Hidalgo O., Bravo-Almonacid F.F. Expression of pathogenesis-related proteins in transplastomic tobacco plants confers resistance to filamentous pathogens under field trials. Sci. Rep. 2019;9:2791. doi:10.1038/s41598-019-39568-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Jun S.-Y., Sattler S.A., Cortez G.S., Vermerris W., Sattler S.E., Kang C. Biochemical and structural analysis of substrate specificity of a phenylalanine ammonia-lyase. Plant Physiol. 2018;176:1452–1468. doi:10.1104/pp.17.01608. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Saxena A., Mishra S., Ray S., Raghuwanshi R., Singh H.B. Differential reprogramming of defense network in Capsicum annum L. plants against Colletotrichum truncatum infection by phyllospheric and rhizospheric Trichoderma strains. J. Plant Growth Regul. 2020;39:751–763. doi:10.1007/s00344-019-10017-y. [CrossRef] [Google Scholar]

150. Perazzolli M., Dagostin S., Ferrari A., Elad Y., Pertot I. Induction of systemic resistance against Plasmopara viticolain grapevine by Trichoderma harzianum T39 and benzothiadiazole. Biol. Control. 2008;47:228–234. doi:10.1016/j.biocontrol.2008.08.008. [CrossRef] [Google Scholar]

151. Yuan M., Huang Y., Ge W., Jia Z., Song S., Zhang L., Huang Y. Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber. BMC Genom. 2019;20:144. doi:10.1186/s12864-019-5513-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

152. Ton J., van der Ent S., van Hulten M., Pozo M., van Oosten V., van Loon L.C., Mauch-Mani B., Turlings T.C.J., Pieterse C.M.J. Priming as a mechanism behind induced resistance against pathogens, insects and abiotic stress. IOBC/wprs Bull. 2009;44:3–13. [Google Scholar]

153. Aranega-Bou P., de la O Leyva M., Finiti I., García-Agustín P., González-Bosch C. Priming of plant resistance by natural compounds. Hexanoic acid as a model. Front. Plant Sci. 2014;5:488. doi:10.3389/fpls.2014.00488. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

154. Gupta R., Bar M. Plant immunity, priming, and systemic resistance as mechanisms for Trichoderma spp. biocontrol. In: Sharma A., Sharma P., editors. Trichoderma. Rhizosphere Biology. Springer; Singapore: 2020. pp. 81–110. [CrossRef] [Google Scholar]

155. Verma H., Kumar D., Kumar V., Kumari M., Singh S.K., Sharma V.K., Droby S., Santoyo G., White J.F., Kumar A. The potential application of endophytes in management of stress from drought and salinity in crop plants. Microorganisms. 2021;9:1729. doi:10.3390/microorganisms9081729. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

156. Hidangmayum A., Dwivedi P. Plant responses to Trichoderma spp. and their tolerance to abiotic stresses: A review. J. Pharmacogn. Phytochem. 2018;7:758–766. [Google Scholar]

157. Poveda J. Trichoderma parareesei favors the tolerance of rapeseed (Brassica napus L.) to salinity and drought due to a chorismate mutase. Agronomy. 2020;10:118. doi:10.3390/agronomy10010118. [CrossRef] [Google Scholar]

158. Abdullah N.S., Doni F., Mispan M.S., Saiman M.Z., Yusuf Y.M., Oke M.A., Suhaimi N.S.M. Harnessing Trichoderma in agriculture for productivity and sustainability. Agronomy. 2021;11:2559. doi:10.3390/agronomy11122559. [CrossRef] [Google Scholar]

159. Azad K., Kaminskyj S. A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis. 2016;68:73–78. doi:10.1007/s13199-015-0370-y. [CrossRef] [Google Scholar]

160. Zhang S., Gan Y., Xu B. Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front. Plant Sci. 2016;7:1405. doi:10.3389/fpls.2016.01405. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

161. Silletti S., Di Stasio E., Van Oosten M.J., Ventorino V., Pepe O., Napolitano M., Marra R., Woo S.L., Cirillo V., Maggio A. Biostimulant activity of Azotobacter chroococcum and Trichoderma harzianum in durum wheat under water and nitrogen deficiency. Agronomy. 2021;11:380. doi:10.3390/agronomy11020380. [CrossRef] [Google Scholar]

162. Ghorbanpour A., Salimi A., Ghanbary M.A.T., Pirdashti H., Dehestani A. The effect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L.) plants. Sci. Hortic. 2018;230:134–141. doi:10.1016/j.scienta.2017.11.028. [CrossRef] [Google Scholar]

163. Tripathi R., Keswani C., Tewari R. Trichoderma koningii enhances tolerance against thermal stress by regulating ROS metabolism in tomato (Solanum lycopersicum L.) plants. J. Plant Interact. 2021;16:116–126. doi:10.1080/17429145.2021.1908634. [CrossRef] [Google Scholar]

164. Ferreira F.V., Musumeci M.A. Trichoderma as biological control agent: Scope and prospects to improve efficacy. World J. Microbiol. Biotechnol. 2021;37:90. doi:10.1007/s11274-021-03058-7. [PubMed] [CrossRef] [Google Scholar]

165. Khan R.A.A., Najeeb S., Mao Z., Ling J., Yang Y., Li Y., Xie B. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic bacteria and root-knot nematode. Microorganisms. 2020;8:401. doi:10.3390/microorganisms8030401. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

166. Vinale F., Sivasithamparam K., Ghisalberti E.L., Woo S.L., Nigro M., Marra R., Lombardi N., Pascale A., Ruocco M., Lanzuise S., et al. Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol. J. 2014;8:127–139. doi:10.2174/1874437001408010127. [CrossRef] [Google Scholar]

167. Baazeem A., Almanea A., Manikandan P., Alorabi M., Vijayaraghavan P., Abdel-Hadi A. In vitro antibacterial, antifungal, nematocidal and growth promoting activities of Trichoderma hamatum FB10 and its secondary metabolites. J. Fungi. 2021;7:331. doi:10.3390/jof7050331. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

168. Sarsaiya S., Jain A., Fan X., Jia Q., Xu Q., Shu F., Zhou Q., Shi J., Chen J. New insights into detection of a dendrobine compound from a novel endophytic Trichoderma longibrachiatum strain and its toxicity against phytopathogenic bacteria. Front. Microbiol. 2020;11:337. doi:10.3389/fmicb.2020.00337. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

169. Poveda J., Abril-Urias P., Escobar C. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front. Microbiol. 2020;11:992. doi:10.3389/fmicb.2020.00992. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

170. De Oliveira C.M., Almeida N.O., Côrtes M.V.D.C.B., Lobo M., Jr., da Rocha M.R., Ulhoa C.J. Biological control of Pratylenchus brachyurus with isolates of Trichoderma spp. on soybean. Biol. Control. 2021;152:104425. doi:10.1016/j.biocontrol.2020.104425. [CrossRef] [Google Scholar]

171. Sahebani N., Hadavi N. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol. Biochem. 2008;40:2016–2020. doi:10.1016/j.soilbio.2008.03.011. [CrossRef] [Google Scholar]

172. Coppola M., Cascone P., Di Lelio I., Woo S.L., Lorito M., Rao R., Pennacchio F., Guerrieri E., Digilio M.C. Trichoderma atroviride P1 colonization of tomato plants enhances both direct and indirect defense barriers against insects. Front. Physiol. 2019;10:813. doi:10.3389/fphys.2019.00813. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

173. Poveda J. Trichoderma as biocontrol agent against pests: New uses for a mycoparasite. Biol. Control. 2021;159:104634. doi:10.1016/j.biocontrol.2021.104634. [CrossRef] [Google Scholar]

174. Ghosh S.K., Pal S. Entomopathogenic potential of Trichoderma longibrachiatum and its comparative evaluation with malathion against the insect pest Leucinodes orbonalis. Environ. Monit. Assess. 2016;188:37. doi:10.1007/s10661-015-5053-x. [PubMed] [CrossRef] [Google Scholar]

175. Razinger J., Lutz M., Schroers H.J., Urek G., Grunder J. Evaluation of insect associated and plant growth promoting fungi in the control of cabbage root flies. J. Econ. Entomol. 2014;107:1348–1354. doi:10.1603/EC14004. [PubMed] [CrossRef] [Google Scholar]

176. Islam M.S., Subbiah V.K., Siddiquee S. Efficacy of entomopathogenic Trichoderma isolates against sugarcane woolly aphid, Ceratovacuna lanigera Zehntner (Hemiptera: Aphididae) Horticulturae. 2022;8:2. doi:10.3390/horticulturae8010002. [CrossRef] [Google Scholar]

177. Halifu S., Deng X., Song X., Song R. Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests. 2019;10:758. doi:10.3390/f10090758. [CrossRef] [Google Scholar]

178. Cai W.-J., Ye T.-T., Wang Q., Cai B.-D., Feng Y.-Q. A rapid approach to investigate spatiotemporal distribution of phytohormones in rice. Plant Methods. 2016;12:47. doi:10.1186/s13007-016-0147-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

179. Contreras-Cornejo X.A., Macías-Rodríguez L., del-Val E., Larsen J. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants. FEMS Microbiol. Ecol. 2016;92:1–17. doi:10.1093/femsec/fiw036. [PubMed] [CrossRef] [Google Scholar]

180. Brotman Y., Kapuganti J.G., Viterbo A. Trichoderma. Curr. Biol. 2010;20:R390–R391. doi:10.1016/j.cub.2010.02.042. [PubMed] [CrossRef] [Google Scholar]

181. Nogueira-Lopez G., Greenwood D.R., Middleditch M., Winefield C., Eaton C., Steyaert J.M., Mendoza-Mendoza A. The apoplastic secretome of Trichoderma virens during interaction with maize roots shows an inhibition of plant defense and scavenging oxidative stress secreted proteins. Front. Plant Sci. 2018;9:409. doi:10.3389/fpls.2018.00409. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

182. Jaroszuk-Ściseł J., Kurek E., Rodzik B., Winiarczyk K. Interactions between rye (Secale cereale) root border cells (RBCs) and pathogenic and nonpathogenic rhizosphere strains of Fusarium culmorum. Mycol. Res. 2009;113:1053–1061. doi:10.1016/j.mycres.2009.07.001. [PubMed] [CrossRef] [Google Scholar]

183. Hawes M., Allen C., Turgeon G., Curlango-Rivera G., Tran T.M., Huskey D.A., Xiong Z. Root border cells and their role in plant defense. Annu. Rev. Phytopathol. 2016;54:143–161. doi:10.1146/annurev-phyto-080615-100140. [PubMed] [CrossRef] [Google Scholar]

184. Jaroszuk-Ściseł J., Kurek E. Komórki graniczne korzenia i ich rola w interakcjach roślina-mikroorganizmy glebowe. Postęp. Nauk Rol. 2008;1:43–56. [Google Scholar]

185. Liu Q., Li K., Guo X., Ma L., Guo Y., Liu Z. Developmental characteristics of grapevine seedlings root border cells and their response to ρ-hydroxybenzoic acid. Plant Soil. 2019;443:199–218. doi:10.1007/s11104-019-04220-9. [CrossRef] [Google Scholar]

186. Kershaw M.J., Talbot N.J. Hydrophobins and repellents: Proteins with fundamental roles in fungal morphogenesis. Fungal Genet. Biol. 1998;23:18–33. doi:10.1006/fgbi.1997.1022. [PubMed] [CrossRef] [Google Scholar]

187. Viterbo A., Chet I. TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol. Plant Pathol. 2006;7:249–258. doi:10.1111/j.1364-3703.2006.00335.x. [PubMed] [CrossRef] [Google Scholar]

188. Samolski I., Rincón A.M., Pinzón L.M., Viterbo A., Monte E. The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology. 2012;158:129–138. doi:10.1099/mic.0.053140-0. [PubMed] [CrossRef] [Google Scholar]

189. Sánchez-Cruz R., Mehta R., Atriztán-Hernández K., Martínez-Villamil O., del Rayo Sánchez-Carbente M., Sánchez-Reyes A., Lira-Ruan V., González-Chávez C.A., Tabche-Barrera M.L., Bárcenas-Rodríguez R.C., et al. Effects on Capsicum annuum plants colonized with Trichoderma atroviride P. Karst strains genetically modified in Taswo1, a gene coding for a protein with expansin-like activity. Plants. 2021;10:1919. doi:10.3390/plants10091919. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

190. Chen J., Karuppiah V., Dou K. Multiplayer interaction of Trichoderma and plant in the induced plant resistance. In: Gupta V.K., Zeilinger S., Singh H.B., Druzhinina I., editors. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier; Amsterdam, The Netherlands: 2020. pp. 141–155. [CrossRef] [Google Scholar]

191. Vargas W.A., Mandawe J.C., Kenerley C.M. Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol. 2009;151:792–808. doi:10.1104/pp.109.141291. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

192. Hermosa R., Viterbo A., Chet I., Monte E. Plant-beneficial effects of Trichoderma and of its genes. Microbiology. 2012;158:17–25. doi:10.1099/mic.0.052274-0. [PubMed] [CrossRef] [Google Scholar]

193. Tamayo-Velez A., Osorio N.W. Co-inoculation with an arbuscular mycorrhizal fungus and a phosphate-solubilizing fungus promotes the plant growth and phosphate uptake of avocado plantlets in a nursery. Botany. 2017;95:539–545. doi:10.1139/cjb-2016-0224. [CrossRef] [Google Scholar]

194. Zhou L.S., Tang K., Guo S.X. The plant growth-promoting fungus (PGPF) Alternaria sp. A13 markedly enhances Salvia miltiorrhiza root growth and active ingredient accumulation under greenhouse and field conditions. Int. J. Mol. Sci. 2018;19:270. doi:10.3390/ijms19010270. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

195. Jaroszuk-Ściseł J., Kurek E., Trytek M. Efficiency of indoleacetic acid, gibberellic acid and ethylene synthesized in vitro by Fusarium culmorum strains with different effects on cereal growth. Biologia. 2014;69:281–292. doi:10.2478/s11756-013-0328-6. [CrossRef] [Google Scholar]

196. Mefteh F.B., Daoud A., Bouket A.C., Alenezi F.N., Luptakova L., Rateb M.E., Kadri A., Gharsallah N., Belbahri L. Fungal root microbiome from healthy and brittle leaf diseased date palm trees (Phoenix dactylifera L.) reveals a hidden untapped arsenal of antibacterial and broad spectrum antifungal secondary metabolites. Front. Biol. 2017;8:307. doi:10.3389/fmicb.2017.00307. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

197. Shi W.L., Chen X.L., Wang L.X., Gong Z.T., Li S., Li C.L., Xie B.B., Zhang W., Shi M., Li C., et al. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp. J. Exp. Bot. 2016;67:2191–2205. doi:10.1093/jxb/erw023. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

198. Alfiky A., Weisskopf L. Deciphering Trichoderma-plant-pathogen interactions for better development of biological applications. J. Fungi. 2021;7:61. doi:10.3390/jof7010061. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

199. Ozimek E., Jaroszuk-Ściseł J., Bohacz J., Korniłłowicz-Kowalska T., Tyśkiewicz R., Słomka A., Nowak A., Hanaka A. Synthesis of indoleacetic acid, gibberellic acid and ACC-deaminase by Mortierella strains promote winter wheat seedlings growth under different conditions. Int. J. Mol. Sci. 2018;19:3218. doi:10.3390/ijms19103218. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

200. Zhang F., Zhu Z., Yang X., Shen Q. Trichoderma harzianum T-E5 significantly affects cucumber root exudates and fungal community in the cucumber rhizosphere. Appl. Soil Ecol. 2013;72:41–48. doi:10.1016/j.apsoil.2013.05.016. [CrossRef] [Google Scholar]

201. Zhao L., Zhang Y. Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. J. Integr. Agr. 2015;14:1588–1597. doi:10.1016/S2095-3119(14)60966-7. [CrossRef] [Google Scholar]

202. Fu S.F., Wei J.Y., Chen H.W., Liu Y.Y., Lu H.Y., Chou J.Y. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signal. Behav. 2015;10:1–9. doi:10.1080/15592324.2015.1048052. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

203. Nieto-Jacobo M.F., Steyaert J.M., Salazar-Badillo F.B., Nguyen D.V., Rostás M., Braithwaite M., De Souza J.T., Jimenez-Bremont J.F., Ohkura M., Stewart A., et al. Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front. Plant Sci. 2017;8:102. doi:10.3389/fpls.2017.00102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

204. Saber W.I.A., Ghoneem K.M., Rashad Y.M., Al-Askar A.A. Trichoderma harzianum WKY1: An indole acetic acid producer for growth improvement and anthracnose disease control in sorghum. Biocontrol Sci. Technol. 2017;27:654–676. doi:10.1080/09583157.2017.1321733. [CrossRef] [Google Scholar]

205. Woźniak M., Gałązka A., Tyśkiewicz R., Jaroszuk-Ściseł J. Endophytic bacteria potentially promote plant growth by synthesizing different metabolites and their phenotypic/physiological profiles in the Biolog GEN III MicroPlateTM test. Int. J. Mol. Sci. 2019;20:5283. doi:10.3390/ijms20215283. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

206. Ozimek E., Hanaka A. Mortierella Species as the plant growth-promoting fungi present in the agricultural soils. Agriculture. 2021;11:7. doi:10.3390/agriculture11010007. [CrossRef] [Google Scholar]

207. Napitupulu T.P., Kanti A., Sudiana I.M. Evaluation of the environmental factors modulating indole-3-acetic acid (IAA) production by Trichoderma harzianum InaCC F88. IOP Conf. Ser. Earth Environ. Sci. 2019;308:012060. doi:10.1088/1755-1315/308/1/012060. [CrossRef] [Google Scholar]

208. Contreras-Cornejo H.A., Macías-Rodríguez L., Cortés-Penagos C., López-Bucio J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in arabidopsis. Plant Physiol. 2009;149:1579–1592. doi:10.1104/pp.108.130369. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

209. Bader A.N., Salerno G.L., Covacevich F., Consolo V.F. Native Trichoderma harzianum strains from Argentina produce indole-3 acetic acid and phosphorus solubilization, promote growth and control wilt disease on tomato (Solanum lycopersicum L.) J. King Saud Univ. Sci. 2020;32:867–873. doi:10.1016/j.jksus.2019.04.002. [CrossRef] [Google Scholar]

210. Illescas M., Pedrero-Méndez A., Pitorini-Bovolini M., Hermosa R., Monte E. Phytohormone production profiles in Trichoderma species and their relationship to wheat plant responses to water stress. Pathogens. 2021;10:991. doi:10.3390/pathogens10080991. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

211. Sánchez-Montesinos B., Diánez F., Moreno-Gavíra A., Gea F.J., Santos M. Role of Trichoderma aggressivum f. europaeum as plant-growth promoter in horticulture. Agronomy. 2020;10:1004. doi:10.3390/agronomy10071004. [CrossRef] [Google Scholar]

212. De Oliveira J., Rodrigues C., Vandenberghe L.P.S., Câmara M.C., Libardi N., Soccol C.R. Gibberellic acid production by different fermentation systems using citric pulp as substrate/support. BioMed Res. Int. 2017:5191046. doi:10.1155/2017/5191046. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

213. Salazar-Cerezo S., Martínez-Montiel N., García-Sánchez J., Pérez-Y-Terrón R., Martínez-Contreras R.D. Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi and bacteria. Microbiol. Res. 2018;208:85–98. doi:10.1016/j.micres.2018.01.010. [PubMed] [CrossRef] [Google Scholar]

214. Cen Y.K., Lin J.G., Wang Y.L., Wang J.Y., Liu Z.Q., Zheng Y.G. The gibberellin producer Fusarium fujikuroi: Methods and technologies in the current toolkit. Front. Bioeng. Biotechnol. 2020;8:232. doi:10.3389/fbioe.2020.00232. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

215. You J., Zhang J., Wu M., Yang L., Chen W., Li G. Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biol. Control. 2016;101:31–38. doi:10.1016/j.biocontrol.2016.06.006. [CrossRef] [Google Scholar]

216. Kamalov L.S., Turgunov K.K., Aripova S.F., Abdilalimov O. Gibberillin A-3 from the microscopic fungus Trichoderma harzianum. Chem. Nat. Compd. 2018;54:421–422. doi:10.1007/s10600-018-2368-1. [CrossRef] [Google Scholar]

217. Todorovic B., Glick B.R. The interconversion of ACC deaminase and D-cysteine desulfhydrase by directed mutagenesis. Planta. 2008;229:193–205. doi:10.1007/s00425-008-0820-3. [PubMed] [CrossRef] [Google Scholar]

218. Rauf M., Awais M., Ud-Din A., Ali K., Gul H., Rahman M.M., Hamayun M., Arif M. Molecular mechanisms of the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing Trichoderma asperellum MAP1 in enhancing wheat tolerance to waterlogging stress. Front. Plant Sci. 2021;11:614971. doi:10.3389/fpls.2020.614971. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

219. Dubois M., Van den Broeck L., Inzé D. The pivotal role of ethylene in plant growth. Trends Plant Sci. 2018;23:1–14. doi:10.1016/j.tplants.2018.01.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

220. Glick B.R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 2014;169:30–39. doi:10.1016/j.micres.2013.09.009. [PubMed] [CrossRef] [Google Scholar]

221. Nascimento F.X., Rossi M.J., Soares C.R.F.S., McConkey B.J., Glick B.R. New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS ONE. 2014;9:e99168. doi:10.1371/journal.pone.0099168. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

222. Saravanakumar K., MubarakAli D., Kathiresan K., Wang M.-H. An evidence of fungal derived 1-aminocyclopropane-1-carboxylate deaminase promoting the growth of mangroves. Beni-Suef Univ. J. Appl. 2018;7:446–451. doi:10.1016/j.bjbas.2018.03.013. [CrossRef] [Google Scholar]

223. Zhang F., Dou K., Liu C., Chen F., Wu W., Yang T., Li L., Liu T., Yu L. The application potential of Trichoderma T-soybean containing 1-aminocyclopropane-1-carboxylate for maize production. Physiol. Mol. Plant Pathol. 2020;110:101475. doi:10.1016/j.pmpp.2020.101475. [CrossRef] [Google Scholar]

224. Viterbo A., Landau U., Kim S., Chernin L., Chet I. Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol. Lett. 2010;305:42–48. doi:10.1111/j.1574-6968.2010.01910.x. [PubMed] [CrossRef] [Google Scholar]

225. Tsolakidou M.-D., Pantelides L.S., Tzima A.K., Kang S., Paplomatas E.J., Tsaltas D. Disruption and overexpression of the gene encoding ACC (1-aminocyclopropane-1-carboxylic acid) deaminase in soil-borne fungal pathogen Verticillium dahliae revealed the role of ACC as a potential regulator of virulence and plant defense. Mol. Plant Microbe Interact. 2019;32:639–653. doi:10.1094/MPMI-07-18-0203-R. [PubMed] [CrossRef] [Google Scholar]

226. Stewart A., Hill R. Applications of Trichoderma in plant growth promotion. In: Gupta V.K., Schmoll M., Herrera-Estrella A., Upadhyay R.S., Druzhinina I., Tuohy M.G., editors. Biotechnology and Biology of Trichoderma. Elsevier; Amsterdam, The Netherlands: 2014. pp. 415–428. [CrossRef] [Google Scholar]

227. Menezes-Blackburn D., Giles C., Darch T., George T.S., Blackwell M., Stutter M., Shand C., Lumsdon D., Cooper P., Wendler R., et al. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: A review. Plant Soil. 2018;427:5–16. doi:10.1007/s11104-017-3362-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

228. Saravanakumar K., Shanmuga Arasu V., Kathiresan K. Effect of Trichoderma on soil phosphate solubilization and growth improvement of Avicennia marina. Aquat. Bot. 2013;104:101–105. doi:10.1016/j.aquabot.2012.09.001. [CrossRef] [Google Scholar]

229. Scervino J.M., Mesa M.P., Monica I.D., Recchi M., Moreno N.S., Godeas A. Soil fungal isolates produce different organic acid patterns involved in phosphate salt solubilization. Biol. Fertil. Soils. 2010;46:755–763. doi:10.1007/s00374-010-0482-8. [CrossRef] [Google Scholar]

230. Öğüt M., Akdağ C., Düzdemir O., Sakin M.A. Single and double inoculation with Azospirillum/Trichoderma: The effects on dry bean and wheat. Biol. Fertil. Soils. 2005;41:262–272. doi:10.1007/s00374-004-0818-3. [CrossRef] [Google Scholar]

231. Borges Chagas L.F., Chagas Junior A.F., Rodrigues de Carvalho M., de Oliveira Miller L., Orozco Colonia B.S. Evaluation of the phosphate solubilization potential of Trichoderma strains (Trichoplus JCO) and effects on rice biomass. J. Soil Sci. Plant Nutr. 2015;15:794–804. doi:10.4067/S0718-95162015005000054. [CrossRef] [Google Scholar]

232. Paul S., Raksh*t A. Effect of seed bio-priming with Trichoderma viride strain BHU-2953 for enhancing soil phosphorus solubilization and uptake in soybean (Glycine max) J. Soil Sci. Plant Nutr. 2021;21:1041–1052. doi:10.1007/s42729-021-00420-4. [CrossRef] [Google Scholar]

233. Li Y.T., Hwang S.G., Huang Y.M., Huang C.H. Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Protect. 2018;110:275–282. doi:10.1016/j.cropro.2017.03.021. [CrossRef] [Google Scholar]

234. Altomare C., Norvell W.A., Björkman T., Harman G.E. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl. Environ. Microbiol. 1999;65:2926–2933. doi:10.1128/AEM.65.7.2926-2933.1999. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

235. Singh B.N., Dwivedi P., Sarma B.K., Singh G.S., Singh H.B. Trichoderma asperellum T42 reprograms tobacco for enhanced nitrogen utilization efficiency and plant growth when fed with N nutrients. Front. Plant Sci. 2018;9:163. doi:10.3389/fpls.2018.00163. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

236. Massart S., Martinez-Medina M., Jijakli M.H. Biological control in the microbiome era: Challenges and opportunities. Biol. Control. 2015;89:98–108. doi:10.1016/j.biocontrol.2015.06.003. [CrossRef] [Google Scholar]

237. Massart S., Perazzolli M., Höfte M., Pertot I., Jijakli M.H. Impact of the omic technologies for understanding the modes of action of biological control agents against plant pathogens. Biol. Control. 2015;60:725–746. doi:10.1007/s10526-015-9686-z. [CrossRef] [Google Scholar]

238. Li N., Islam M.T., Kang S. Secreted metabolite-mediated interactions between rhizosphere bacteria and Trichoderma biocontrol agents. PLoS ONE. 2019;14:e0227228. doi:10.1371/journal.pone.0227228. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

239. Ramírez-Valdespino C.A., Casas-Flores S., Olmedo-Monfil V. Trichoderma as a model to study effector-like molecules. Front. Microbiol. 2019;10:1030. doi:10.3389/fmicb.2019.01030. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

240. Estrada-Rivera M., Rebolledo-Prudencio O.G., Pérez-Robles D.A., Rocha Medina M.C., González-López M.C., Casas-Flores S. Histone deacetylase HDA-2 is essential in Trichoderma to modulate multiple responses in Arabidopsis. Plant Physiol. 2019;179:1343–1361. doi:10.1104/pp.18.01092. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

241. Ansari S., Kumar V., Bhatt D.N., Irfan M., Datta A. N-acetylglucosamine sensing and metabolic engineering for attenuating human and plant pathogens. Bioengineering. 2022;9:64. doi:10.3390/bioengineering9020064. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

242. Karlsson M., Atanasova L., Jensen D.F., Zeilinger S. Necrotrophic mycoparasites and their genomes. Microbiol. Spectrum. 2017;5:2–5. doi:10.1128/microbiolspec.FUNK-0016-2016. [PubMed] [CrossRef] [Google Scholar]

243. Köhl J., Kolnaar R., Ravensberg W.J. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci. 2019;10:845. doi:10.3389/fpls.2019.00845. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

244. Anonymous. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Off. J. Eur. Union L. 2009;309:1–50. [Google Scholar]

245. Anonymous. Commission Regulation (EU) No 546/2011 of 10 June 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards uniform principles for evaluation and authorization of plant protection products. Off. J. Eur. Union L. 2011;155:127–175. [Google Scholar]

246. Anonymous. Commission Regulation (EU) No 284/2013 of 1 March 2013 setting out the data requirements for plant protection products, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. Off. J. Eur. Union L. 2013;93:85–152. [Google Scholar]

Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth (2024)

FAQs

What is the application of Trichoderma in agriculture? ›

Trichoderma in agriculture helps in reducing the reliance on synthetic chemicals. Trichoderma's ability to control pathogens has enhanced plant health and led to reduced usage of pesticides and fertilizers which is a cornerstone of sustainable agriculture.

How is Trichoderma used as a biocontrol agent? ›

Trichoderma strains exert biocontrol against fungal phytopathogens either indirectly, by competing for nutrients and space, modifying the environmental conditions, or promoting plant growth and plant defensive mechanisms and antibiosis, or directly, by mechanisms such as mycoparasitism.

What is the effect of Trichoderma on plant growth? ›

Trichoderma is mainly used to control soil-borne diseases as well as some leaf and panicle diseases of various plants. Trichoderma can not only prevent diseases but also promotes plant growth, improves nutrient utilization efficiency, enhances plant resistance, and improves agrochemical pollution environment.

Is Trichoderma a biocontrol organism against pathogens of agricultural produce? ›

The mechanisms by which Trichoderma reduces the occurrence of plant diseases include the competition for nutrients and space, synthesis of antifungal metabolites, mycoparasitism, production of lytic enzymes that degrade cell walls of fungal plant pathogens [4,49], as well as induction of plant resistance [50].

What are the disadvantages of Trichoderma? ›

The poor osmotolerance level of Trichoderma strains is one of the most significant drawbacks of using them as a biocontrol agent in field condition. Soil water conditions are limiting elements that affect fungal activity.

What disease does Trichoderma cause in humans? ›

Trichoderma species are mainly responsible for continuous ambulatory peritoneal dialysis–associated peritonitis (7 cases) and invasive infections in immunocompromised patients (9 cases) with a hematologic malignancy or solid-organ transplant.

Is Trichoderma harmful? ›

Some Trichoderma, especially T. brevicompactum, T. atroviride, and T. harzianum, can cause opportunistic infections in humans, including sinusitis, skin and liver infections, pneumonia, and stomatitis [62] . ...

What are Trichoderma species potentially useful as? ›

Trichoderma species, free living fungi, are present in root ecosystems are potentially useful as biopesticides.

What are the plant beneficial effects of Trichoderma and of its genes? ›

The expression of Trichoderma genes in plants has beneficial results, mainly in the control of plant diseases and resistance to adverse environmental conditions.

Is Trichoderma effective? ›

3.5 Plant Growth Promotion by Fungi

Trichoderma spp. are effective in giving protection to many plants by direct inhibition of many of the common fungal pathogens of plants due to antibiosis and parasiticism.

What are the results of Trichoderma? ›

Trichoderma can inhibit PP by producing different kinds of toxic metabolites or directly parasitize on tissue, egg, hyphae, or cell of PP, they can as well produce some elicitor proteins or chemical signals like the salicylic acid (SA) or jasmonic acid (JA) to either enhance the plant's defense mechanism against the PP ...

How does Trichoderma affect soil properties? ›

Trichoderma exhibits a strong colonisation ability in soil, which helps to improve the soil physico-chemical environment, encourage the development and maintenance of advantageous soil microbial communities, increase crop resistance and ultimately foster crop growth, and increase agricultural production (Zin, ...

How does Trichoderma act as a biocontrol agent? ›

Trichoderma spp. may exert direct biocon- trol by parasitizing a range of fungi, detecting other fungi and growing towards them. The remote sensing is partially due to the sequential expression of CWDEs, mostly chitinases, glu- canases and proteases [29].

How to use Trichoderma in agriculture? ›

Seed treatment: Mix 6 - 10 g of Trichoderma powder per Kg of seed before sowing. 2. Nursery treatment: Apply 10 - 25 g of Trichoderma powder per 100 m2 of nursery bed. Application of neem cake and FYM before treatment increases the efficacy.

What are the biological functions of Trichoderma spp for agriculture applications? ›

Moreover, Trichoderma spp. play a pivotal role in the sustainable intensification of agricultural soil and fertility management due to their ability to influence soil microbial communities, enhance plant growth, and improve ecosystem functioning in low-input farming systems (Bending et al., 2002; Burke et al., 2011).

How do you apply Trichoderma to soil? ›

Cutting and seedling root dip: Mix 10g of Trichoderma powder along with 100g of well rotten FYM per litre of water and dip the cuttings and seedlings for 10 minutes before planting. 4. Soil treatment: Apply 5 Kg of Trichoderma powder per hectar after turning of sun hemp or dhaincha into the soil for green manuring.

What are the benefits of Trichoderma in soil? ›

Trichoderma spp. significantly suppress the growth of plant pathogenic microorganisms and regulate the rate of plant growth. Recent works have shown that common plant disease such as root rot disease, damping off, wilt, fruit rot and other plant diseases can be controlled by Trichoderma spp.

Is Trichoderma used as fertilizer? ›

Trichoderma harzianum is a soil-dwelling fungus used as a kind of biocontrol fungus, it has a quicker growth rate, and highly adaptation, it widely used as biological fertilizer.

Can Trichoderma be sprayed on leaves? ›

Combination of soil application and leaf sprays with Trichoderma based biopreparate appears to be the most effective one, however, the increased quality and quantity of the yield in treated pepper plants may be due to the production of plant growth promoters or through indirect stimulation of nutrient uptake as well.

Top Articles
Latest Posts
Article information

Author: Msgr. Refugio Daniel

Last Updated:

Views: 6685

Rating: 4.3 / 5 (54 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Msgr. Refugio Daniel

Birthday: 1999-09-15

Address: 8416 Beatty Center, Derekfort, VA 72092-0500

Phone: +6838967160603

Job: Mining Executive

Hobby: Woodworking, Knitting, Fishing, Coffee roasting, Kayaking, Horseback riding, Kite flying

Introduction: My name is Msgr. Refugio Daniel, I am a fine, precious, encouraging, calm, glamorous, vivacious, friendly person who loves writing and wants to share my knowledge and understanding with you.